



Staple!

Ord: \_\_\_\_\_

Differential Eqns  
MAP2302 4689

C-Class

Prof. JLF King  
Touch: 6May2016

C1: Show no work.

**a** A soln to  $[f'' - 3f'](x) = 14 - 6x$  is **polynomial**  $f(x) = \underline{\dots}$ . Using parameters  $\alpha$  and  $\beta$ , then, the *general* solution to  $[h'' - 3h'](x) = 14 - 6x$  is

$$h_{\alpha, \beta}(x) = \underline{\dots}$$

And the  $h$  with  $h(0) = 0$  and  $h'(0) = 0$  is  $h(x) = \underline{\dots}$

**b** DiffOperators **P, Q, R, S** are defined as

$$\begin{aligned} \mathbf{P}(f) &:= f(3) \cdot f', & \mathbf{Q}(f) &:= \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) &:= [\cos(3) \cdot f] + f'', & \mathbf{S}(f) &:= \cos(3) + [3f']. \end{aligned}$$

Then... **P** is linear:  $T \ F$ . **Q** is linear:  $T \ F$ .  
**R** is linear:  $T \ F$ . **S** is linear:  $T \ F$ .

**c** Complex number  $[x + iy]^2 = -8i$ , for *real numbers*  $x = \underline{\dots}$  and  $y = \underline{\dots}$ .

**d** With **1()** the constant-1 fnc and  $F(x) := \sin(5x)$ , then, convolution

$$[\mathbf{1} * F](x) = \underline{\dots}$$

**C2:** OYOP: *In grammatical English sentences, write your essay on every third line (usually), so that I can easily write between the lines. Do not restate the question.*

Brine with  $5 \frac{\text{lb}}{\text{gal}}$  salt flows at rate  $1 \frac{\text{gal}}{\text{min}}$  into a tank that initially held 100gal of  $2 \frac{\text{lb}}{\text{gal}}$ -salt brine. The tank is well-mixed, and brine is flowing *out* at rate  $3 \frac{\text{gal}}{\text{min}}$ . So the tank will empty in  $\underline{\dots}$  minutes.

At time  $t$ , let  $\sigma(t)$  denote the tank-salinity [in  $\text{lb}/\text{gal}$ ] and use  $y(t)$  for the total number of pounds of salt in the tank.

Explain how to derive a DE for  $y()$ . Don't just pull a DE out of the air; explain, using *Text* and *Pictures*, how it comes from the physical situation. Now re-write the DE in linear-DE form. Use FOLDE

to solve the DE. Dividing by the amount of water in the tank at time  $t$ , gives this formula for the salinity:

$$\sigma(t) = \left[ \dots \right] \frac{\text{lb}}{\text{gal}}.$$

As the tank approaches empty, its salinity approaches  $\left[ \dots \right] \frac{\text{lb}}{\text{gal}}$ . Do Not approximate.

End of C-Class

C1: \_\_\_\_\_ 100pts

C2: \_\_\_\_\_ 100pts

Total: \_\_\_\_\_ 200pts