

Staple!

NT-Cryptography
MAT4930 2H22

Class-C

Prof. JLF King
Wedn., 10Apr2019

Please fill-in every *blank* on this sheet.

.....

C1: Show no work. Write DNE if the object does not exist or the operation cannot be performed. $\mathcal{N}B: DNE \neq \{\} \neq 0 \neq$ Empty-word.

a A minimum requirement for an LOR (letter-of-recommendation) from Prof. K is two courses. Circle:

Yes

True

Darn tootin'!

b Entropy $\mathcal{H}(\frac{1}{16}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}) =$

c Dictionary is 1: ϵ , 2:'0', 3:'00', 4:'1'. Thus $\text{EnZiv}(0010000011111001) =$

..... in $\langle 7 \rangle 1 \langle 4 \rangle 0 \dots$ noise notation. In bits sent through the channel, $\text{EnZiv}(0010000011)$ is

Ord: _____

d

Evaluate $Id \otimes \mu$ on the numbers 1, 2, 5, 10, 20:

Mystery function $f: \mathbb{Z}_+ \rightarrow \mathbb{Z}$ satisfies $f \otimes \tau = Id$. So $f(20) =$

OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so that I can easily write between the lines.

C2: State *Shannon source-coding thm* as stated/proved in class.

C3: State *Jensen's Inequality* as a formal thm, including the IFF condition, and *defining* [not just naming] what kind of fnc $f: \mathbb{R} \rightarrow \mathbb{R}$ that *Jensen's* applies to.

Draw a LARGE, labeled picture illustrating the idea of the proof, but do not write a proof.

C4: Let $\vec{1} := 1111\dots$, the half- ∞ constant-1 bit-string. Using our Ziv-algorithm, with dictionary that [initially] only has the nullword, we start parsing $\vec{1}$.

Let $P(k)$ be the largest-number of bits we've parsed, having used-up at most k many bits from $\vec{1}$. I.e, we Ziv-parse, and we eventually parse a new word [which we enter into our dictionary], having read exactly $P(k)$ many bits, in total, where $P(k) \leq k$. As we scan for the next new word, we run past the k^{th} -bit in $\vec{1}$.

i Give an approximate formula for $N(k)$, the number of words you've parsed, having read the first $P(k)$ many bits.

ii Let $Z(k)$ be the length of the Ziv-compressed bit-string that encodes the first $P(k)$ many bits in the source-string. When k is large, give a pretty good estimate for $Z(k)$; a “closed formula”, neither having a \sum summation operator, nor a \prod product operator.

What are approximate values for $N(500,000)$, and for $Z(500,000)$?

Compute $\lim_{k \rightarrow \infty} \frac{Z(k)}{k} = \text{.....}$.

C1: _____ 105pts

C2: _____ 45pts

C3: _____ 50pts

C4: _____ 85pts

Total: _____ 285pts

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor (or his colleague).”*
Name/Signature/Ord

Ord: _____