

Abstract Algebra Class-C Prof. JLF King
MAS4301 09B1 Wednesday, 20Nov2019

Hi. Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{\} \neq 0 \neq \text{Empty-word}$.

C1: Show no work. A *minimum* requirement for an LOR (letter-of-recommendation) from Prof. K is two courses.
 Circle:

Yes True Darn tootin'!

True

Darn tootin'!

From class, the group G of OP-isometries [Orientation-Preserving] of the cube is isomorphic to S_4 .

Two colorings of the twelve *edges* of the cube using K colors, are **equivalent** IFF some OP-isometry carries one to the other. To compute $\mathcal{E}(K)$, the number of equivalence classes, fill in this table.

What isometry g ?	$\#\{\text{such } g\}$	$\#\text{Fix}(g) = K^E$.	$E := \#\text{[Edge-orbits under } \langle g \rangle\text{]}.$
Id	1	K^{12}	$\lceil 1^{12} \rceil$
FaceRot 90°			
FaceRot 180°			
VertexRot 120°			
EdgeRot 180°			

$$\text{And } \mathcal{E}(K) = \dots \cdot \left[K^{12} + \dots \right].$$

A finite group Γ acts on a finite set Ω . *Then...*

The number of Γ -orbits divides $ \Gamma $:	<input type="checkbox"/>	<input checked="" type="checkbox"/>
Cardinality of <i>each</i> Γ -orbit divides $ \Gamma $:	<input checked="" type="checkbox"/>	<input type="checkbox"/>

In $\mathbb{D}_8 = \langle R, F \rangle$, the conjugacy-class of R^3F is

$$\mathbb{C}(\mathbf{R}^3\mathbf{F}) = \left\{ \text{[redacted]} \right\} \text{ and } \mathbb{C}(\mathbf{R}^3) = \left\{ \text{[redacted]} \right\}.$$

The number of conjugacy-classes is

Endomorphism $f: (\mathbb{Z}_{40}, +, 0) \rightarrow (\mathbb{Z}_{40}, +, 0)$ has kernel $\text{Ker}(f) = \{0, 8, 16, 24, 32\}$ and [this is the part I forgot to put back in] $f(3) = 5$. Writing \mathbb{Z}_{40} as $[0..40)$, then,

$$f^{-1}(15) = \left\{ \dots \right\}.$$

OYOP: *In grammatical English sentences, write your essay on every 2nd line (usually), so that I can easily write between the lines.*

C2: Distinct elements $\alpha, \beta \in G$ each have order 2. Prove there exists another order-2 element. [Recall “ $\text{Ord}(y) = 2$ ” means $y^2 = \mathbf{e}$, yet $y \neq \mathbf{e}$.] [Hint: One way is to start with $\alpha\beta\alpha$.]

End of Class-C

CI: _____ 160pts

C2: _____ 60pts

Total: 220pts

NAME: _____ Ord: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____