

ACTroids. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

C4: [105pts] Show no work.

z5 Our continuation-course, section # 3009, meets at the same time, 7th period, but in a different room. Circle one.

True! Yes! You mean I don't already know Everything?!

a Define $\Omega :=$ $\subset \mathbb{R}$ st. the Ω -closed ball $C := \Omega\text{-CldBal}_5(0) =$ satisfies $C \supsetneq \text{Itr}_\Omega(C) =$ $\supsetneq \Omega\text{-Bal}_5(0) =$.

b Using the stereographic-metric on $\dot{\mathbb{R}}$:
 $\sigma(-1, 0) =$, $\sigma(\infty, 0) =$. For $u \in \mathbb{R}_+$,
 distance $\sigma(-u, u) =$ = Formula(u).

c₁₀ Use α and σ for the arctan & stereogr. metrics. With $b_n :=$, seq $\vec{b} \subset \mathbb{R}$ is α -Cauchy but not σ -Cauchy. With $c_n :=$, sequence $\vec{c} \subset \mathbb{R}$ is σ -Cauchy but not α -Cauchy.

d₁₀ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) := [x - 1]^2 - 3$. Define restrictions $g := f|_{[-1, 2]}$ and $h := f|_{[-2, 2]}$. Then the sup-norm $\|g\|_{\sup} =$ and $\|h\|_{\sup} =$.

e MS (Ω, d) has $Y \subset \Omega$. So (Y, d) is **cluster-point compact** IFF [Put Ω - or Y - before "closed/open/interior" etc.]

.....

 And $\mathbb{Q} \cap [3, 5]$

is cluster-point compact: True False

f That 5 is a **Lebesgue number** of open-cover \mathcal{C} of (Ω, d) , means that

.....

C5: [35pts] **Essay question, triple-spaced** (*Do not restate the problem*):

We have sequences $\vec{x}, \vec{y} \subset \mathbb{R}$ with $\lim(\vec{x}) = 2$ and $\lim(\vec{y}) = 5$. Letting $p_n := x_n + y_n$, give a rigorous ε -proof that $\lim(\vec{p}) = 7$.

(You may quote, without proof, this result: *If \vec{b} convergent, then \vec{b} is Cauchy. A fortiori, $\text{Diam}(\text{Range}(\vec{b})) < \infty$.*)

End of Class-C