

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$.

C1: Show no work.

a State the Cramer's Rule Thm.

Apply C.R. to give a formula for $x_2 = \text{_____}$

ITO of A, B, C, D, t_1, t_2 , where $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$.

b $\mu = \text{_____} \leq \nu = \text{_____}$

are the eigenvalues of $G := \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$. Let $D := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then $D = U^{-1}GU$ where the 2×2 integer matrix U is

$$U = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}.$$

c The seq. $\vec{g} := (g_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$g_{n+2} = 3g_{n+1} + 4g_n$$

and initial conditions $g_0 := 2$ and $g_1 := 1$. So its n^{th} term is $g_n = C_1 \cdot \mu^n + C_2 \cdot \nu^n$, where $\mu < \nu$ are real, and

$C_1 = \text{_____}$, $\mu = \text{_____}$,

$C_2 = \text{_____}$ and $\nu = \text{_____}$.

[Hint: The corresponding matrix is $G := \begin{bmatrix} 3 & 4 \\ 1 & 0 \end{bmatrix}$. And μ, ν are its eigenvalues.]

d $M := \begin{bmatrix} -5 & 3 & 18 \\ -2 & 0 & 12 \\ -4 & 4 & 7 \end{bmatrix}$ has three real eigenvalues,

$\alpha = \text{_____} \leq \beta = \text{_____} \leq \gamma = \text{_____}$.

Hence $\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{bmatrix} = U^{-1}MU$, where

$$U = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}.$$

e An example of 2×2 -matrices with $A^2 \neq B^2$, yet with $A^3 = B^3$, is $A = \text{_____}$ and $B = \text{_____}$.

f The 3×3 elem-matrix whose lefthand action adds 8 times row-2 to row-1 is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

g Suppose T is a linear map from \mathbb{R}^3 to \mathbb{R}^2 . Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be the standard basis for \mathbb{R}^2 . Suppose that $T(\mathbf{e}_1) = 17\mathbf{v}_1 - 2\mathbf{v}_2$ and $T(\mathbf{e}_2) = 6\mathbf{v}_2$ and $T(\mathbf{e}_3) = -4\mathbf{v}_1 - 3\mathbf{v}_2$.

Then the matrix of T is: _____ .

h The matrix-product $\begin{bmatrix} 2 & 1 & 4 \\ 0 & -1 & 1 \\ -2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} & 0 & \sqrt{2} \\ 0 & -1 & 5 \end{bmatrix}$ equals _____ .

i Matrix-product $\begin{bmatrix} b \\ c \end{bmatrix} \cdot \begin{bmatrix} x & y \end{bmatrix} = \text{_____}$.

j Over \mathbb{Q} , the inverse of $E := \begin{bmatrix} 1 & x & z \\ 1 & 1 & y \\ 1 & 1 & 1 \end{bmatrix}$ is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

k The inverse of $\begin{bmatrix} 1 & -6 & -7 \\ -3 & 1 & 1 \end{bmatrix}$ is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

l Let $K := \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$. The minimum-deg monic polynomial $h()$ st. $h(K) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is $h(x) = \text{_____}$.

m Consider these two matrices:

$$R := \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \quad \text{and} \quad A := \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

Product matrix $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

$[RA]^{40}$ equals $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent.]

n Consider these two matrices:

$$C := \frac{1}{2} \cdot \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \quad \text{and} \quad B := \frac{1}{2} \cdot \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{bmatrix}.$$

Determine the matrix $[\mathbf{CB}]^{44} =$

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent.]

O Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ Y \\ 3 \end{bmatrix}$. Our \mathbf{v}_3 is in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when number $Y =$ And then, $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha =$ and $\beta =$

P Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ W \\ Y \end{bmatrix}$, So $\mathbf{v}_3 \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when $W =$ & $Y =$ And $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha =$ and $\beta =$

Essay question: On your own sheets of paper, write a soln using complete sentences, explaining a bit about HOW this problem is solved.

C2: A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\left[\begin{array}{ccccc|c} 1 & 1 & 0 & 0 & 1 & 12 \\ 0 & 0 & 1 & 0 & -8 & 34 \\ 0 & 0 & 0 & 1 & 5 & -56 \end{array} \right], \text{ which is almost in RREF. Please } \boxed{\text{circle}} \text{ each pivot.}$$

OYOP, describe the general solution in this form,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or...or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) =$