

C3: Show no work.

a A finite group G acts on a finite set Ω . Then the number of G -orbits divides $\text{Ord}(G)$: **T** **F**

b Let $V_K := G \times \mathbb{Z}_3 \times G$, where $G := (\mathbb{Z}_3, +)$. AAD-POIntegers, $|\text{Aut}(V_3)| =$ _____.

c K -color the edges of a tetrahedron. There are _____ rotation-distinct colorings. [Hint: Use Burnside's Thm, P.490.]

d There exist groups P, A, B with $P \times A \cong P \times B$, yet $A \not\cong B$. **Circle** one: **True** **False**

e In **CN**, $\alpha^4 = (087352641) \in \mathbb{S}_7$. So $\alpha =$ _____.

f $G := \mathbb{Z}_{625} \times \mathbb{Z}_{125} \times \mathbb{Z}_7$ has _____ elements of order-25. So G has _____ cyclic subgps of order-25.

Essay questions: Fill-in all blanks. For each question, carefully write a triple-spaced essay solving the problem.

C4: For subgps $H, K \subset G$, suppose that $K \triangleleft G$. Prove that the set-product HK is a subgroup of G . [Hint: First show that $HK = KH$.]

C5: **a** Let $H := \text{Z}(G)$. Prove that $H \triangleleft G$. More strongly, prove that H is a *characteristic subgp* of G ; that $H \overset{\text{Aut}}{\triangleleft} G$.

b Suppose $f: G \rightarrow \Gamma$ is a gp-homomorphism. Give the *definition* of $K := \text{Ker}(f)$. Prove that $K \triangleleft G$.

Give an example of *specific groups* G, Γ and a homomorphism $f: G \rightarrow \Gamma$ for which $\text{Ker}(f)$ is *not* a characteristic subgp of G .

c For an elt $h \in G$, the inner-aut $J_h(x) := h x h^{-1}$. For an $\alpha \in \text{Aut}(G)$, prove that $\alpha \circ J_h \circ \alpha^{-1} = J_{\alpha(h)}$. Use this to argue that $\text{Inn}(G) \triangleleft \text{Aut}(G)$.

C6: Recall that **ΠΠ-auts** $S := \begin{smallmatrix} \times & \times \\ \times & \times \end{smallmatrix}$ and

$T := \begin{smallmatrix} \cdot & \cdot \\ \times & \times \end{smallmatrix}$. Draw LARGE 16-dot diagrams of TS and $\beta := T\text{SR}$. Cell-cycle-sig(β) is _____ and $\text{ΠΠ-cycle-sig}(\beta) =$ _____.

C-Home: _____ 265pts**C3:** _____ 95pts**C4:** _____ 15pts**C5:** _____ 20pts**C6:** _____ 20pts**Total:** _____ 415pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*
Name/Signature/Ord