

Please. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative signs!**)

Abbrevs: **seq** for “sequence”. Use **nv-** for “non-void”, e.g. “consider a nv-closed set K ”. Use **MS** for “metric space”.

ITOf for “in terms of”. **st.** for “such that” **poly** for “polynomial” **coeff** for “coefficient”

Use $\bar{\mathbb{R}}$ for $[-\infty, +\infty]$, the “extended reals”. Use **LUBP** for “(the) LUB-property”. Use **GLBP** for “(the) greatest lower bound property”.

For each of the limit questions, write “ $+\infty$ ”, “ $-\infty$ ”, a real number, or *if none of these* “DNE”. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. For the **True/False** questions, circle **T** or **F**, but write in “DNE” if the question is inconsistent.

C0: *Greek:* Write the **other case** and name.
Eg: “ α : B :” You fill in: A alpha B beta

Γ : ρ : δ :

C1: Show no work.

a Ordered set $(\mathbb{Q}, <)$ has LUBP. T F

Ordered set $\mathbb{Q} \cap [3, 5]$ has LUBP T F

Half-open real-interval $(3, 5]$ has LUBP. T F

The Integers \mathbb{Z} has LUB-prop. T F

b The plane $\mathbb{R} \times \mathbb{R}$ has the LUB-prop. T F

c If ordered set $(\mathbb{T}, <)$ has the LUB-property, then it has the GLB-property. T F

d Using the floor and ceiling fncs: $\lfloor \lceil \pi \rceil \rfloor =$

and $\lceil \sqrt{19} \rceil =$

e $\lim_{x \rightarrow 0^+} \cos(\frac{1}{x}) =$ $\lim_{x \rightarrow \infty} \cos(\frac{1}{x}) =$

$\lim_{x \rightarrow 0^+} x \cdot \cos(\frac{1}{x}) =$ $\lim_{x \rightarrow \infty} x \cdot \cos(\frac{1}{x}) =$

f $\lim_{x \rightarrow 0} \frac{\sqrt{9+x} - \sqrt{9-x}}{x} =$

g Let $F(x) := \sin(x)^x$. Its derivative, then, is $F'(x) =$

h An example $h: (0, 1) \rightarrow \mathbb{R}$ of a **bnded, cts** fnc which is NOT *uniformly*-continuous is

$h(x) =$

i On \mathbb{Z}_+ , write $x \$ y$ IFF $xy < 0$. So $\$$ is **Circle**

Transitive: T F . **Symm.:** T F . **Reflex.:** T F .

On \mathbb{Z} , say that $x \nabla y$ IFF $x - y \leq 1$. Then ∇ is:

Trans.: T F . **Symm.:** T F . **Reflex.:** T F .
(Be *careful* on both parts!)

j Let $\Omega := \{+\infty, -\infty\} \cup \mathbb{Q}$, equipped with the usual arctan-metric atm. Then each atm-Cauchy sequence converges in Ω : T F

C2: Our space is \mathbb{R} with the usual Euclidean metric $d(x, z) := |x - z|$.

I These *closed* bnded nv-intervals $A_n :=$, when

unioned, form a set $\bigcup_{n=1}^{\infty} A_n =$
which is not closed.

II Give an example of a set,

$$\left\{ \text{.....} \in \mathbb{R} \mid \text{.....} \right\},$$

which has *exactly one* accumulation point in \mathbb{R} .

III Suppose that U, V_1, V_2, \dots are open sets of \mathbb{R} , and E, K_1, K_2, \dots are closed sets. **Circle** those of the following sets which are guaranteed to be *closed* in \mathbb{R} .

$E \setminus U$. $U \setminus E$. $K_1 \setminus E$. $\bigcap_{n=1}^{\infty} K_n$.

$\mathbb{R} \setminus \left[\bigcup_{n=1}^{\infty} V_n \right]$. $E \cup K_1$. $E \cap K_1$.

Essays. On your own sheets of lined paper, give the following definitions or proofs. No “scratch work” accepted, only complete, grammatical, coherent sentences. Write **every 2nd or every 3rd line** for math essays.

C2: A Write the definition of $\lim_{x \rightarrow 4} x^2 = 5$.
 [Hint: You need 3 quantifiers, an ε and a δ .]

B Given seqs. with $\lim(\vec{b}) = 2$ and $\lim(\vec{c}) = 4$, let $\vec{a} := \vec{b} \cdot \vec{c}$. Given $\varepsilon > 0$, produce –with careful proof– a posint N st.: $\forall k \geq N: |a_k - 8| < \varepsilon$.

C Given seqs. with $\lim(\vec{b}) = 2$ and $\lim(\vec{c}) = 4$, let $\vec{s} := \vec{b} + \vec{c}$. Given $\varepsilon > 0$, produce –with careful proof– a posint N st.: $\forall k \geq N: |s_k - 6| < \varepsilon$.

D A sequence $\vec{c} \subset \mathbb{R}$ is **Cauchy** IFF ... [Hint: Be precise with your quantifiers]

C3: State the Nested Intervals Thm. Prove it.

State the Bolzano-Weierstrass Thm. Prove it.

State the Heine-Borel Thm. Prove it.

C4: On a set Ω , a fnc $m: \Omega \times \Omega \rightarrow [0, \infty)$ is a **metric** if: (Write the 3 remaining axioms.)

C5: Consider a MS (Ω, m) , and points $P, Q \in \Omega$.

i The radius-5 (open) **ball** is

$$\text{Ball}_5(P) := \{ \dots \in \Omega \mid \dots \}.$$

ii The radius- r **punctured ball** is

$$\text{Ball}'_r(P) := \{ \dots \in \Omega \mid \dots \}.$$

iii For a seq. $\vec{b} \subset \Omega$, the stmt $\lim(\vec{b}) = P$ means For a fnc $f: \Omega \rightarrow \mathbb{R}$, the stmt $\lim_{Q \rightarrow P} f(Q) = 7$ means

iv A subset $C \subset \Omega$ is **Ω -closed** if

A subset $K \subset \Omega$ is **sequentially compact** if

An **open cover** of a set $E \subset \Omega$ is A subset $E \subset \Omega$ is **compact** if Filename: Classwork/Analysis/ACES2006t/c-cl-PRAC.ACES2006t.latex

C6: Fix a compact MS (Ω, m) .

a Prove that each closed subset $E \subset \Omega$ is compact.
 [Hint: The complement, $\Omega \setminus E$, is Ω -open. Use it, together with a given open-cover of E , to produce an open-cover of Ω . Etc.]

b Prove that Ω is sequentially-compact. [Hint: FTSOC, consider a seq. $\vec{s} \subset \Omega$ with no convergent subseq. Argue, WLOG, that \vec{s} consists of distinct pts. Now argue that $U := \Omega \setminus \{s_n\}_{n=1}^{\infty}$ is open. Now...]

C7: State the **Fundamental Thm of Arithmetic** (about factoring into primes).

Use the **FTArithmetic** to give a careful proof that there are *no* posints n, d for which $\left[\frac{n}{d}\right]^5 = 2$.

C8: Define: “A number $\beta \in \mathbb{R}$ is “**algebraic** of degree-2006” IFF...”. You may use “poly(nomial)” without defn, but if you use terms “ratpoly” or “intpoly” then you must define them. Note that **zip** is my name for the poly all of whose coeffs are zero.

Define: “A number $\tau \in \mathbb{R}$ is **transcendental** IFF...”

End of Prac-C

Print name: Ord:

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: