& (iter (for j from 0 to 160) (for p = (elt *Primes-List* j)) (when (= (legendre -5 p) 1) (count 1) (format t "~%p = ~3D: (p mod 20) = ~D." p (mod p 20)) ) ) p = 2: (p mod 20) = 2. ;; Note 2 is prime, but not odd. ;; Here are the oddprimes: p = 3: (p mod 20) = 3. p = 349: (p mod 20) = 9. p = 709: (p mod 20) = 9. p = 7: (p mod 20) = 7. p = 367: (p mod 20) = 7. p = 727: (p mod 20) = 7. p = 23: (p mod 20) = 3. p = 383: (p mod 20) = 3. p = 743: (p mod 20) = 3. p = 29: (p mod 20) = 9. p = 389: (p mod 20) = 9. p = 761: (p mod 20) = 1. p = 41: (p mod 20) = 1. p = 401: (p mod 20) = 1. p = 769: (p mod 20) = 9. p = 43: (p mod 20) = 3. p = 409: (p mod 20) = 9. p = 787: (p mod 20) = 7. p = 47: (p mod 20) = 7. p = 421: (p mod 20) = 1. p = 809: (p mod 20) = 9. p = 61: (p mod 20) = 1. p = 443: (p mod 20) = 3. p = 821: (p mod 20) = 1. p = 67: (p mod 20) = 7. p = 449: (p mod 20) = 9. p = 823: (p mod 20) = 3. p = 83: (p mod 20) = 3. p = 461: (p mod 20) = 1. p = 827: (p mod 20) = 7. p = 89: (p mod 20) = 9. p = 463: (p mod 20) = 3. p = 829: (p mod 20) = 9. p = 101: (p mod 20) = 1. p = 467: (p mod 20) = 7. p = 863: (p mod 20) = 3. p = 103: (p mod 20) = 3. p = 487: (p mod 20) = 7. p = 881: (p mod 20) = 1. p = 107: (p mod 20) = 7. p = 503: (p mod 20) = 3. p = 883: (p mod 20) = 3. p = 109: (p mod 20) = 9. p = 509: (p mod 20) = 9. p = 887: (p mod 20) = 7. p = 127: (p mod 20) = 7. p = 521: (p mod 20) = 1. p = 907: (p mod 20) = 7. p = 149: (p mod 20) = 9. p = 523: (p mod 20) = 3. p = 929: (p mod 20) = 9. p = 163: (p mod 20) = 3. p = 541: (p mod 20) = 1. p = 941: (p mod 20) = 1. p = 167: (p mod 20) = 7. p = 547: (p mod 20) = 7. p = 947: (p mod 20) = 7. p = 181: (p mod 20) = 1. p = 563: (p mod 20) = 3. p = 223: (p mod 20) = 3. p = 569: (p mod 20) = 9. p = 227: (p mod 20) = 7. p = 587: (p mod 20) = 7. p = 229: (p mod 20) = 9. p = 601: (p mod 20) = 1. p = 241: (p mod 20) = 1. p = 607: (p mod 20) = 7. p = 263: (p mod 20) = 3. p = 641: (p mod 20) = 1. p = 269: (p mod 20) = 9. p = 643: (p mod 20) = 3. p = 281: (p mod 20) = 1. p = 647: (p mod 20) = 7. p = 283: (p mod 20) = 3. p = 661: (p mod 20) = 1. p = 307: (p mod 20) = 7. p = 683: (p mod 20) = 3. p = 347: (p mod 20) = 7. p = 701: (p mod 20) = 1. ;; So 80 primes out of the first 160 primes have -5 as a QR.