

The Boole Transformation

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 17 November, 2017 (at 02:51)

ABSTRACT: The Boole map preserves Lebesgue measure on the one-point compactification $\dot{\mathbb{R}}$ of \mathbb{R} . The scaled Boole map preserves the finite measure having density $1/[x^2 + 1]$. \diamond

A condition for an endomorphism of \mathbb{R} to be measure-preserving. Fix an open subset $X \subset \mathbb{R}$. When does a continuously differentiable (not necessarily invertible) map $f: X \rightarrow \mathbb{R}$ preserve Lebesgue measure? (N.B. For simplicity, we assume henceforth that f is everywhere finite-to-one.) Evidently f is measure-preserving exactly when

$$\forall x \in X : \sum_{r \in f^{-1}(x)} \frac{1}{|f'(r)|} = 1.$$

For consider a small interval I centered at x . The inverse images of x , write them $r_1 < \dots < r_N$, have some minimum distance between them and so, if I is small enough, then $f^{-1}(I)$ consists of N disjoint intervals whose lengths are essentially $\left\{ \text{Len}(I)/f'(r_n) \right\}_{n=1}^N$. The intervals have “exactly” these lengths when I is infinitesimal. This justifies the equation and shows incidentally that f' must be everywhere non-zero.

More generally, given a cts density function $\Delta: X \rightarrow \mathbb{R}_+$, when does f preserve the measure determined by $\Delta(\cdot)$? (i.e, the measure which assigns to each set $B \subset X$ the value $\int_B \Delta(x) \cdot dx$.) Well, first assume that on X the derivative of our function never vanishes. The condition equivalent to f preserving the measure from Δ is this: $\forall x \in X$,

$$1: \sum_{r: f(r)=x} \frac{\Delta(r)}{|f'(r)|} = \Delta(x).$$

(Recall that $\Delta(\cdot)$ is continuous.)

Defn. Let $\dot{\mathbb{R}}$ be the one-point compactification of

the reals. Define rational maps $f, h: \dot{\mathbb{R}} \rightarrow \dot{\mathbb{R}}$ by

$$f := \left[x \mapsto x - \frac{1}{x} \right]; \quad (\text{Boole map})$$

$$h := \frac{1}{2} \cdot f. \quad (\text{Scaled Boole map}) \quad \square$$

2: Theorem. *The Boole map preserves Lebesgue measure.* \diamond

Proof. Lebesgue measure has density $\Delta(\cdot) \equiv 1$.

Fix a real x . Then $f(r) = x$ implies that $\frac{r^2 - 1}{r} = x$ and thus

$$\ddagger: F_x(r) = 0, \quad \text{where} \quad F_x(r) := r^2 - xr - 1.$$

The discriminant of F_x is $[-x]^2 - 4 \cdot 1 \cdot [-1]$. Now $x^2 + 4$ is always positive, so F_x has two distinct real roots; call them ℓ and u . We need to verify that the sum in (1) is always 1 i.e, that

$$*: \frac{1}{f'(\ell)} + \frac{1}{f'(u)} - 1$$

is zero. But (*) equals

$$\begin{aligned} & \frac{\ell^2}{\ell^2 + 1} + \frac{u^2}{u^2 + 1} - 1 \\ &= \frac{\ell^2}{\ell^2 + 1} - \frac{1}{u^2 + 1} = \frac{[\ell \cdot u]^2 - 1}{\text{Common denom}}. \end{aligned}$$

Since the product of the two roots of a quadratic equals the constant term of the quadratic, here $\ell \cdot u$ equals -1 (from defn (\ddagger)) and so the above numerator $[\ell \cdot u]^2 - 1$ is zero, as desired. \diamond

3: Theorem. *The scaled Boole map preserves the measure having density*

$$\Delta(x) := \frac{1}{x^2 + 1} \stackrel{\text{note}}{=} \arctan'(x).$$

(One could make this a probability density by dividing it by π so as to give total measure 1 to \mathbb{R}). \diamond

Proof. Fixing $x \in \mathbb{R}$, the eqn $x = h(r)$ means $2x = f(r)$ and thus has two distinct real solutions, $r := \ell$ and $r := u$.

From $x = h(r) = [r^2 - 1]/2r$ we compute

$$\begin{aligned} x^2 + 1 &= \frac{[r^2 - 1]^2}{4r^2} + 1 = \frac{[r^2 - 1]^2 + 4r^2}{4r^2} \\ &= \frac{[r^2 + 1]^2}{4r^2}. \end{aligned}$$

Taking reciprocals, $\Delta(x)/2 = 2r^2/[r^2 + 1]^2$ which equals $\Delta(r)/h'(r)$. But this equality holds when r is either of the two inverse images, ℓ and u , of x . Thus

$$\begin{aligned} \Delta(x) &= \frac{\Delta(x)}{2} + \frac{\Delta(x)}{2} \\ &= \frac{\Delta(\ell)}{h'(\ell)} + \frac{\Delta(u)}{h'(u)}. \end{aligned}$$

And this is precisely what (1) requires for h to preserve the from- Δ measure. \spadesuit

Filename: Dynamics/boolemap.latex
As of: Wednesday 13Nov2002. Typeset: 17Nov2017 at 02:51.