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Abstract: Here is my proof (probably the standard proof)
of a “Marriage Lemma” type condition which guarantees a
matching in a bipartite graph. As a corollary, when ap-
plied to a finite bipartite graph one obtains the result that a
doubly-stochastic matrix is a convex average of permutation
matrices.

It also has two proofs of the “Injection Theorem”, which
might be an appropriate Putnam problem.

Prolegomenon. In a graph♥1 Γ = (((V,E))), use E
both for the edge set as well as the edge relation.
I.e vEw means that vertices v and w are connected
by an edge. Suppose the vertex set is. Our Γ is a
bipartite graph if V can be written as a disjoint
union V = B tG st.:

Whenever xEy, then [x ∈ B IFF y ∈ G].

Our goal is to place a condition on E which guar-
antees the existence of an involution f :V � satisfying

∀v ∈ V : v E f(v) .

In this case, we say that the graph “admits a mar-
riage” .

We first need a condition for graphs without loops.
Graph Γ = (((V,E))) is a good tree if it is a tree (a con-
nected acyclic graph) where each vertex has only count-
able degree. Moreover, Γ has no vertex of degree-zero
(i.e, is not a single point) and has at most one root, a
vertex of degree-one. Say that Γ is a good forest if
its connected components are good trees.

1: Forest Lemma. Each good forest Γ = (((V,E))) admits
a marriage. ♦

Proof. Since a vertex has countable degree, each
connected component in the forest has but countably
many vertices and edges. So we may assume♥2 that

♥1Here, a graph has no multiple-edges and no edges from a
vertex to itself. We allow both V and E to be infinite.

♥2Stan Wagon points out that we appear to use the Axiom
of Choice to pick out one vertex from each component from
which to enumerate edges and conclude that the component
is countable. In his book he shows that a bipartite theorem
[implied by the one below] is equivalent to what he calls “The
Axiom of Choice for pairs”.

our forest is countable. (or is just one tree) if desired.
Since a tree has no loops, the limitation on roots im-
plies that each tree is infinite.

Enumerate V as v1, v2, . . . . Iteratively do the fol-
lowing:

Let v denote the lowest unmatched vertex (ini-
tially v1) and let C denote the connected component
of E owning v.

a: If C has no root then choose some w with vEw.
Define f to match v with w and delete both vertices
and all their edges.

b: If C has a root, x, then have f match x with w,
where w denotes the unique vertex connected to x.
Delete both vertices and their edges.

Whether deletion (a) or (b) is done, the resulting
graph remains a good forest. Moreover, step (b) de-
creases by one the distance from the root in the com-
ponent owning v to vertex v. So in but finitely many
applications of (b), vertex v will be matched.

Thus f is eventually defined on all vertices, as de-
sired. �

2: Defn. A weighted graph Γ = (((V,E;W))) has
a weight function W:E→[0, 1] so that for each ver-
tex v: ∑

e: e∈E〈v〉
W(e) = 12a:

where E〈v〉 denotes the set of edges incident on v.
A loop in Γ is a cycle of distinct vertices and edges,

v0 e0 v1 e1 v2 e2 . . . vN−1 eN−12b:

where subscripts are taken modulo N (i.e, vN = v0) and
where ei connects vi with vi+1. Moreover, each edge
has positive weight. �

If we delete all zero-weight edges, then each ver-
tex has countable degree. Hence (see preceding Axiom
of Choice footnote) we may assume that each connected
component is countable.

3: Main Theorem. A weighted bipartite♥3 graph Γ =
(((V,E;W))) admits a marriage. ♦

♥3There are weighted graphs which are not bipartite, e.g,
3 vertices, each connected to his fellows with a 1

2
-weight edge.

Of course, a non-bipartite graph permits no marriage.
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We may assume that Γ is connected. So deleting
the zero-weight edges, henceforth

�� ��Γ is countable .
Given fncs W,U :E→[0, 1], write♥4 W � U if for

each vertex v: [W(v) = 0] implies [U(v) = 0]. In par-
ticular, every U-loop is a W-loop.

3a: Sand-shifting lemma. Consider L, a loop (2b) in
the above Γ. Then there exists a weight-fnc U � W
for which L is no longer loop. (I.e, U gives zero-weight to
some L-edge.) ♦

Proof. Because Γ is bipartite, the loop length N must
be even. Let µ be the minimum, around the loop, of
the positive numbers

1−W(ei), for i even; W(ei), for i odd.3b:

Alter the weights around the loop by adding µ to
the weight of even edges and subtracting it from the
weight of odd edges. Now, courtesy (2a), some edge ei
in the loop has weight 0 or 1. In the latter case, the
edges ei−1 and ei+1 now have weight-zero. Thus delet-
ing all edges of weight-zero eliminates this loop. �

3c: Edge-deletion lemma. Fix an edge c in the above Γ.
Then there exists a weight-fnc U�W with U(c) = 0.♦

Proof. Say a (2b)-loop “contains” c if e0 = c. Enumer-
ate the loops which contain c; there are but countably
many since each loop is determined by a finite sub-
set of the edge set. For each loop in turn, apply the
above “weight shifting” procedure; after the kth loop
has been broken, let Wk(·) denote the resulting new
weight-fnc. So

W =W0 �W1 �W2 � · · · .

Let ck abbreviate “Wk(c)”. Since c is always the e0
of the loops we consider, and since (3b) adds mass to
even-subscripted edges, it follows that ck+1 − ck > 0.
Thus ∑∞

k=1

∣∣ck+1 − ck
∣∣ 6 ∞ .3d:

(Indeed, the sum is 61, since each ck ∈ [0, 1].)
♥4We can view W and U as measures on E, in which case
U � W is precisely “U is absolutely-cts w.r.t W.”

For each edge e, note that the absolute value of
Wk(e)−Wk−1(e) is either ck − ck−1 or is zero, de-
pending on whether e was in the kth loop or not. Since
this is an absolutely-summable function of k, by (3d),
we conclude that there is a well-defined non-negative
limit function

U(·) := lim
k→∞

Wk(·)

with U � W.

U is a weight-function. We seek♥5 to estab-
lish (2a). Fix a vertex v. Since each loop involves at
most two of v’s edges we conclude that∑

e∈E〈v〉

∣∣Wk+1(e)−Wk(e)
∣∣ 6 2

∣∣ck+1 − ck
∣∣ .

The RhS is a summable function of k. Thus we have
convergence in the “little `1 norm” on `1

(
E〈v〉

)
and

may conclude that∑
e∈E〈v〉

U(e) = lim
k→∞

∑
e∈E〈v〉

Wk(e) = lim
k→∞

1 = 1 .

Deleting all zero-weight edges arranges that c is free
of loops. Notice that this algorithm leaves the vertex
set unchanged. �

Pf of the Main Thm.

Preserving the sum while freeing edges. Let v
denote a fixed vertex incident on the edge c of the pre-
ceding section and let F ⊂ E〈v〉 be any subset contain-
ing c. The kth loop through c can have (loops have no
repeated vertices) at most one edge in F other than c. If
it does not, then

∑
e∈FWk(e) exceeds

∑
e∈FWk−1(e),

otherwise they are equal. In any case we conclude
that

∑
e∈FW∞(e) dominates

∑
e∈FW(e).

Now let F be a finite subset of E〈v〉 and free its
edges one by one. Letting sF(·) denote the resulting
weight-function, the preceding paragraph gives∑

e∈F
sF(e) >

∑
e∈F
W(e)3e:

(Actually, weight-function sF depends on the order in which
the edges were freed. We do not need this in the notation.)

♥5A convergent sequence of weight-fncs need not be a weight-
fnc: Consider a vertex v with edges e1, e2, . . . , so that the kth

weight-fnc gives mass 1 to ek, and zero to each other v-edge.
The limit-fnc then gives total-weight zero to the v-edges.

Filename: Problems/GraphTheory/Matching/bipartite^.latex



Prof. JLF King Seeing the trees in the forest Page 3 of 3

Obtaining a graph without loops
We now use (3e) as a lemma. Let u1, u2, . . . , un, . . . be
a listing of vertices of the graph so that every vertex
appear infinitely often in the list. Set s0(·) :=W(·).

Suppose, at stage n−1 we have chosen sets
F1, . . . ,Fn−1 with Fi a finite subset of E[ui]. And
we have a weight-function sn−1. Now choose a finite
Fn ⊂ E[un] sufficiently large that∑

e∈Fn

sn−1(e) > 1− 1
n .

Apply operation (3e) to Fn to produce a new weight-
function sn := sFn satisfying: Each edge in Fn is free.
And by (3e), ∑

e∈Fn

sn(e) > 1− 1

n
.3f:

Do this inductively and arrange that
⋃∞

n=1 Fn = E.
Notice that once an edge has been freed, its weight
does not change as later edges are freed. So there
is a well-defined non-negative limit function t(·) :=
limn→∞ sn(·). And t(e) = sn(e), for each e ∈ Fn.
Thus (3f) holds for t replacing sn.

Fix a vertex v. Since each vertex of the graph ap-
pears as infinitely many un,∑

e∈E〈v〉
t(e) > sup

n
[1− 1

n ] = 1

from (3f). Conversely, note that each sn is non-
negative on E〈v〉. Thus∑

e∈E〈v〉
t(e) 6 liminf

n

∑
e∈E〈v〉

sn(e) = 1

by Fatou’s Lemma applied to counting measure
on E〈v〉. Thus t(·) is a weight-function.

Seeing the trees in the forest
Delete all zero-weight edges. Our bipartite graph is
now acyclic. For each edge e of weight 1, match its
two vertices and delete them and e from the graph.
Our acyclic bipartite graph now has the property that
each edge has weight strictly between 0 and 1. So
each component is a tree having no vertices of degree
less-equal one. An application of the Forest Lemma
completes the proof. �

Remark. (March 30, 1992. This needs to be checked.) In
our bipartite graph, call the sets B,G from the Main
Theorem “boys” and “girls”.

Assume now that the weights of edges are non-
negative, that they sum to 1 at every girl, and sum
to >1 (possibly ∞ ??) at every boy. We will marry-off
the all the boys to some of the girls.

It seems to me that the “Iterating loop deletion”
section preserves the total-weight at each vertex, and
retains that edges have non-negative weight. Since
every edge is incident on some girl, every edge has
weight between 0 and 1.

Consider a boy with a weight=1 edge to a girl.
Delete this boy and every girl he has a weight=1 edge
to. Since such girls have no edges to any other boy,
this does not foul up that

T (any boy) > 1 and T (any girl) = 1

where T (·) denotes total weight at a vertex. Iterate
this operation until there are no weight=1 edges.

Now I claim that the Forest Lemma applies. The
total-weight at a root is >1, but the maximum weight
for every edge is 61; and all weight= 1 edges have
been deleted. So there are no roots.

4: Corollary. Suppose the boys all have degree b (a
cardinality) and the girls all have degree g ∈ Z+ and
b > g, THEN all the boys can be married-off. ♦

Proof. The proof is to put weight 1/g on each edge.�
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