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INTRODUCTION

Here is an anecdote about how unexciting homework problems led a student studying calculus
to a Good Question, and to the mathematics it engendered.

The standard calculus curriculum spends quite a bit of time on logarithms. Yet it is no hyperbole
that the curve “y = 1/2” —and the standard drill questions concerning its properties— leave many
students comatose. One such was David Feldman —then an undergraduate at Berkeley— who, having
complained to his dad (the mathematician Jacob Feldman) that all the homework was dull, dull,
dull, was challenged in return to invent an interesting problem. David came up with this:

Can a mathematical cueball (a point), fired into the symmetric funnel
between y = —I—% and y = —%, escape in any direction other than flat
out?

As shown in figure 1 below, the cueball ricochets off the two “cushions” so that the angle of incidence
always equals the angle of reflection. “Escape” means that the z-coordinate of the cueball increases
monotonically to +00. Evidently a cueball shot along the z-axis escapes. But can any cueball which
actually hits the cushions avoid being eventually turned around?

Ficure 1 For what initial position and direction will a cueball escape to infinity?

Not long after it was posed, this problem was solved by Benjamin Weiss. Unaware of its origin,
nor that it had been solved, nor that it would eventually connect with what became my field
of study, I was intrigued by this problem when Paul Shields posed it to me during my graduate
studies. Since the problem will lead to a harder question and to the tool which is the theme of this
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2 J.L. King

article, I'm going to forthwith present the bare hands solution I found at the time—so if you want
to think about the problem further, read no farther ...

A FIRST SHOT AT BILLIARDS IN A CUSP

Since the problem arose in a calculus class, to get the ball rolling let’s see what information
can be gleaned by methods taught in an introductory calculus course. The argument below has
become a nice capstone to the section on “Convergence tests for infinite series” in my own classes.

Since the funnel is symmetric, we can without loss of generality reflect the trajectory over the
z-axis and thus consider the cueball to be bouncing off “cushions” y = f(x) = 1/2 and the z-axis.
So as to focus attention on the horizontal cusp at * = 400, let us do away with the vertical cusp
at * = 0 by altering the upper-cushion f near the origin so that it is bounded. This does not affect
whether a cueball can escape, since we keep that f(x) =1/x for all large =.

Suppose, for the sake of contradiction, that in figure2 the cueball v bounces so that its z-
coordinate never decreases:

y = f(x)

F1GURE 2 Let P, = (xn,yn) be the coordinates of the nth reflection of the orbit of cueball v off the
graph of f. Let a;, be the angle that the (tangent to the) curve at P, makes with the horizontal
ie. ap = arctan(|f’(2n)]). After P, the trajectory hits the “floor”, from which the cueball rises
at angle 6,,.

Thus 0 < 8,, < 7/2 for all n, where 6,, is the angle after the nth reflection off the floor. Elementary
geometry shows that 6, = 6,1 + 2a,,, and so the situation in figure2 implies this summation
condition:

io: ay < 00, (3a)
n=1

Consequently «,, — 0, which forces —since f(-) is convex— that x,, — oo. Thus y, \, 0.
Since tan(«w)/a — 1 as @ — 0, summation (3a) can be restated as E;’o:l‘f'(xn)‘ < 00. Letting

Sn be the absolute-value of the slope of the line joining point P, with P,41, the convexity of f
implies that s, < ‘f’(wn)‘ Consequently,

(e @)

an < 0. (3b)

n=1
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Billiards instde a cusp 3

Computing the slope s,. We have used the fact, when the cueball hits the upper cushion f, that
the angles of incidence and reflection are equal. But somewhere our argument had better use that
these angles are equal when the ball bounces up off the floor! Here it is:

tan(6,) = Kiyj; )
" "

The upshot is that
1 _ tan(6,) < tan(6 )

Tptl = To Yo+ Ynd1  Yn + Ynt1

As a consequence,
note Yn — Yn41 > tan(91) ) Yn — Yn+1

Tpil — Tp Yn + Ynt1

So our summation condition mutates one last time, to become

12

Z Yn — Untt 00, with y, N\, 0. (3¢)
nt Yn+1

But this cannot be—such a sum as this last one must always be infinite. Its Mth partial sum is

[e%e) [e%e)
,PM _ Z Yn — Yn+1 > Yn — Yn+1
Yn tYnt1 T UM T YM

- 1 < 5 > 1
> —————(yyw — lim 1) = =
Since the partial sums {Pys}37_,; do not go to zero, conditions (3¢c,b,a) were all impossible, as was

figure2. Any cueball shot out the cusp must turn around. ¢

Post mortem reflection. This proof can be readily shown to a second-semester calculus class
and gives a non-traditional and curious use for a series-divergence test. All that is used about the
upper cushion y = f(x) of the table is that f is an eventually-convex differentiable function which
is asymptotic to the x-axis.

However, the argument is unsatisfactory from the point of view of understanding “why” the
cueball had to turn around. One test of the strength of a method of argument is whether it can be
used on related questions. Suppose we remove the convexity condition and allow the upper-cushion
to have wiggles.

Can cueballs wander monotonically out the cusp for the

table determined by, say, f(x) = (3 + sin(ﬁ)) /(:1; +1)27 (4a)

While one could possibly use a series-divergence argument to exhibit a specific cueball which fails
to escape, such an approach might require real delicacy to make a substantial general assertion.

Yet another natural question for which the series-divergence approach looks ill-adapted focuses
on a stronger sense in which cueballs might fail to escape.

Do cueballs return arbitrarily close (in both
position and direction) to where they started?

(4D)

By the way, a cueball which infinitely-often returns arbitrarily near to its initial state is called
recurrent. Having developed more powerful tools, we will come back to recurrence later.
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4 J.L. King

Philosophy. Answering questions such as (4a,b) for an individual cueball may be difficult. Yet
nearby cueballs have nearby trajectories —for a while— and so it may be profitable to make assertions
about collections of cueballs. This suggests finding a useful measure on the space of cueballs—a
measure which is preserved under the action of “rolling” and “bouncing off the cushion”. It turns
out —this is well-known to those who study dynamical systems but is not a commonplace among
mathematicians in general— that the “billiard flow” on any billiard table has a natural invariant
volume. The theme of this article is the tool of an invariant measure hidden inside a problem which,
on the surface, has no mention of measures. Along the way we will encounter a few elementary
but useful tools from dynamical systems.

Anatomy. Sectionl defines the billiard flow and gives a pictorial proof that billiard measure,
which is a type of volume, is indeed invariant under the flow. Using this measure, §2 presents
Weiss’s solution to Feldman’s problem when the cusp has finite area and gives an almost-everywhere
solution to questions (4a,b).

In order to handle cusps with infinite area it is advantageous to view the billiard measure
differently, and for that reason §3 introduces the notion of the cross-sectional measure “induced”
by the billiard flow. The article culminates in §4 by using this induced measure, a type of area, to
prove that on a “pinched” table, even a table of infinite area, almost-every cueball rolls recurrently.
This result, which is illustrated in figure 17, appears to be new.

The APPENDIX contains brief connections to ergodic theory, and ends with an open problem.

History. Originally, Feldman’s Billiard Problem was part of a longer article with the same theme
of hidden invariant measures. The other problems have been split off into a companion paper, Three
Problems in search of a Measure, [1], which applies the tool of invariant measures to Poncelet’s
Theorem, Tarski’s Plank Problem, and Gelfand’s Question. The APPENDIX of the current article
describes a connection, in the case of an elliptical billiard table, between the induced measure of §3
and the “Poncelet measure” of [1].

Idiosyncrasy. Use “a := b” to mean “a is defined to be b”. Symbol | |-, B indicates the
sets { B} }r in the union happen to be disjoint. For a measure of “area” or “volume”, a nullset
will be a set which has zero area or volume. When a statement “holds almost-everywhere” (a.e.),
this means that it holds except for a nullset of points.

Reflection problems such as David Feldman’s are called “billiard problems”; some curve or
collection of curves form the boundary, the cushtons, and the closed 2-dimensional region I' that
they bound is the billiard table. A mathematical cueball v = (v;6) will be a point v € I" on the
table together with a direction 6. If v —sometimes called the “footpoint” of v—is on the boundary
of the table, then 6 is restricted to the semi-circle of angles pointing into the table.

All our spaces are metric spaces. A measure-space (€2, 1) means that u is a Borel measure on
space €2; all sets and functions are tacitly Borel measurable. A transformation T: Q — Q is
a measurable map; we think of T"(w) := T(T(-?-T(w) --+)) as the location of w at time n. A
measure 4 is T-invariant, or T preserves u, if u(T~1S) = pu(S) for each set S.

After a cueball v has rolled for ¢ seconds, let ®/(v) denote the resulting cueball. This mapping ®
is called a “flow” and satisfies that if one flows for s seconds followed by t seconds, the same result
is obtained by flowing (¢ + s) seconds. Specifically, a flow —which is a continuous-time analogue of
a transformation— on a space €2 is a measurable map

®:RxQ—Q satisfying @(®°(w)) = " (w)
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Billiards instde a cusp 5

such that each ®! is a transformation of 2, and ®° is the identity. Saying the flow is measure-
preserving means that each ®! is a u-preserving transformation.

We use boldface lowercase letters for individual cueballs, e.g., v, w, e, and boldface uppercase
letters for sets of cueballs, e.g., S, B, ¥, I'. We use slanted lowercase letters for (foot)points in the
plane v, w, e, and slanted uppercase letters for sets of points, S, B, X, I'.

§1 THE BILLIARD FLOW

Superficial Question: What i1s the simplest possible billiard table? Superficial Answer: One with
no cushions. We first consider this primordial case of billiards.

Here the table I' is the entire plane R x R. Interpret K = [0,27) as the circle of directions
(angles) 6, equipped with arclength measure “d6”. The space of cueballs

I' .= I'xK
is thus 3-dimensional, and has a natural product-measure

vol := area x arclength,

which simply measures 3-dimensional volume. Given an arbitrary set S of cueballs, its cross-
section in direction 6 is

1S]o:={vel]|(v;0) €S} andso vol(S) :/KareaQSJg) de,

by Fubini’s theorem. Cueball space I' also has a natural topology. Letting &, denote the direction
of cueball v, a metric on I' is

dist(v,w) := dist(v,w) + dist(&, by ),

where the righthand side uses the metrics on the plane and the “circle of directions”, respectively.

Billiard flow ®. To write a formula for ®(v), the location of cueball v after it has “rolled for

t seconds” at unit speed, interpret for a moment 8 as the unit-vector in direction #. Then the
billiard flow on the plane is the continuous map

Pl(v) = <v + té:,; 9v> )

Since area is translation-invariant, the flow leaves volume invariant:
vol (®4(S)) = / area([®'S|y) df
K
= / area([S]y + té) do = / area([S|s) df = vol(S).
K

K
Notice also that

The set of cueballs which ever flow through any particular
point in the table is 2-dimensional; hence it has zero volume.
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6 J.L. King

Billiards tables with cushions. Moving to a more advanced case of billiards, we now glance at
tables where reflection is possible.

Suppose our table I' C RxR is the closure of an open set and whose boundary, 0I', is a
nice continuously differentiable curve. When a cueball hits this cushion, it keeps its tangential
component of velocity but reverses its normal component. So cueball space I' essentially consists
of I' x K with an identification of cueball vi with v, if they have the same footpoint v € OI', the
same tangential component of velocity and opposite normal component.

In light of (6), one can freely permit the cushion to have finitely-many “corners” (e.g. the origin,
in figure2) simply by deleting from I' the nullset of cueballs which ever roll into a corner. Thus
the boundary 0I" need only be piecewise continuously differentiable.

Because of the presence of corners, for a fixed ¢ the “space map” v — ®'v can jump discontinu-
ously as the trajectory of v is moved across a corner. On the other hand, the “time map” ¢ +— ®'v
is always continuous.

The billiard flow leaves vol(-) invariant. In the case JI' consists of a single straight line, the
argument of (5) still applies, since a reflection of the plane does not change area. Together with (6),
this shows that when the table’s cushion is a polygon, billiard measure is ®-invariant. The lemma
we shall need is that for any cushion, volume is flow-invariant.

Billiard Lemma. Suppose the cushion of a billiard table is piecewise continuously-differentiable.
Then volume-measure is invariant under the billiard flow.

Sketch of proof of Billiard Lemma. Since we can partition both the cushion and I' into small
pieces, it suffices to check that vo|<CI>_tC> = vo|<C> when the cushion is the graph of a function
f:10,1] — R which is continuously differentiable, ¢ is some fixed time, and C is a set of cueballs
each of which hit f exactly once as time goes from 0 to —f. Actually, we need but verify this
inequality:

vol(#7'C) < vol(C). (7)

For then analogous reasoning gives the same inequality with “—¢” replaced by t and “C” replaced
by ®~'C. This replacement gives vo|<CI>tCI>_tC> < vo|<CI>_tC>, forcing equality in (7).

Furthermore, we may assume that C is a cube, since the cubes generate the Borel-field on I'. A
“cube” is of the form C = CxI, where I C K is an interval of directions and C' is a square in the
plane. We must therefore prove that

vo|<S> < vo|<C> , whenever C = ®'(S) is a cube (7

as in figure 8 below.

Suppose ¢: [0,1] — R is a piecewise linear approximation of f, and let CIDgt denote the transfor-
mation of flowing for time ¢ but bouncing off the graph of ¢ rather than f.
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Billiards instde a cusp 7

Ficure 8 A small set S of cueballs flows for time ¢. It bounces off the cushion, f, exactly once to
form a small cube C = CxI, whose interval I of directions points to the southeast. Polygonal
approximation g is sufficiently close to f that every cueball of S hits g exactly once. The solid
line shows the true trajectory of v. The dotted segment shows the altered trajectory of v when
it bounces off of ¢ rather than f.

Since f is continuously differentiable, given ¢ we may take g uniformly close to f in both position
and slope so as to arrange, for any v € S, that dist(CI)gt(v), @t(v)> < e. (The nullset of cueballs v which
hit a vertex of g is immaterial.) This implies that CI)gt(S) is a subset of the set Ball. := Ball.(C) of
cueballs which are within distance € of some cueball in C. But billiard measure is preserved when
bouncing off the polygonal cushion ¢ and so

vol(S) = vol (®,(S)) < vol(Ball.).

And the volume of Ball, tends to the volume of the cube C, as ¢ \ 0. ¢

§2 A SECOND SHOT AT BILLIARDS

The series-divergence proof of the INTRODUCTION showed that if the (piecewise smooth) upper-
cushion f: [0,00) — R4 of figure?2 is eventually-convex, then the set of cueballs which escape is
empty. For a more general f this escape-set E = E(I"), the set of cueballs e such that

liminf x—coord(@te> =+o0,

t—o0
might not be empty but may nonetheless be small in another sense.

A finite-area cusp has a null escape-set: The Squeeze Play. Replacing the convexity of f
with a finite area requirement, floo flz)dx < oo, allows the weaker conclusion that E is a nullset.

“A gallon of water won't fit inside a pint-sized cusp” is the proof: Pick ¢ sufficiently large that
area(S) is pint-sized, where S consists of those points (z,y) € I' with « > x¢; indeed, area(.9) is to
be taken so small that

area(S) - 2r < vol(E).

But vol(SxK) = area(.S) - 2r. Hence SxK has strictly less volume than E. But this contradicts
that
vol(®(E) N (SxK)) — vol(E), as t — oo,

which follows from the definition of the escape-set. So no such x exists and thus vol(E) =0. ¢
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8 J.L. King

A second proofthat vol(E) is zero: Recurrence. For a continuous flow ® on a metric space €2,
a point w is (topologically) recurrent if ®'i(w) — w along some sequence of times t; — oco.

Showing that almost-every cueball is recurrent would emphatically prove that the escape-set is
null. We will not, however, be able to prove that E is empty, since a table of finite area —even a
bounded table— need not have all its cueballs recurrent?.

The key to showing that a.e. cueball is recurrent is to define a measure-theoretic notion of
recurrence. Consider a measure-preserving flow ® on measure-space (£, ). A point w € S “recurs
to S7 if ®'w € S for arbitrarily large times t. A set S is Poincaré-recurrent if a.e. w € S recurs
to S. Flow ® is conservative if every set S C  is Poincaré-recurrent. Define conservativity for
a transformation analogously.

Motivated by his study of the 3-body problem, Henri Poincaré made this simple, but tremen-
dously useful, observation.

. » . . . +
Poincaré-recurrence theorem. If ® is a measure-preserving flow on a finite* measure space,
then ® is conservative. A measure-preserving transformation T' on a finite measure space is likewise
conservative.

PrOOF. Fix time 7 > 0 and let B C S consist of those points which never recur to S after time 7.
Thus ®*(B) is disjoint from B for all t > 7. Consequently these sets

B, ®7(B), ®°"(B), ®’"(B), ...

are mutually disjoint. Since they all have the same mass, B must have been a nullset. ¢

On finite-area table, that almost-every cueball is recurrent is a consequence of the following
elementary fact, which is left as an exercise.

Lemma 9. Suppose Q) is a separable metric space and 1 is a (finite or infinite) measure. Then
under any conservative measure-preserving ﬂow/transformation on (Q,u), almost-every point is
topologically recurrent.

As a consequence, since table f(z) = (3 + sin(ﬁ)) /(:1; +1)? of question (4a) has finite area, its
escape-set is null. T do not know whether it is empty. One can certainly manufacture a finite-area
non-convex upper-cushion f which coaxes one particular cueball v monotonically out to infinity;
simply draw the desired orbit of v first, then draw f to match the desired slope at the reflection
points of the orbit. With a bit of extra effort, one can even arrange for f to have negative slope
everywhere.

Weiss’s proof of empty escape-set. Sometimes an “everywhere” rabbit can be pulled out of
an “almost-everywhere” hat. A case in point is the neat proof by my friend Benjamin Weiss that
under an eventually-convex f of finite area the escape-set is indeed empty.

tConsider a table bounded by a non-circular ellipse. A cueball hit along the major axis has a periodic orbit.
Conversely, a cueball v pointed at a focus —but with footpoint not on the major axis— has an orbit which converges
to the periodic orbit along the major axis. So v is not a recurrent point. Notice, though, that this example exhibits
only a nullset of non-recurrent points, since the set of cueballs pointing at a focus is but 2-dimensional.

YA flow on an infinite measure space need not be conservative; witness ®!(x) := z 4 ¢ on the real line equipped
with Lebesgue measure.
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Billiards instde a cusp 9

The strategy is to show that if even one cueball, v, escapes, then an entire open set of cueballs
escape. We may assume that the orbit of this v = (v;6,) is already in the convex part of the cusp
where the slope of f is always negative (as shown in figure2), and that 0 < 6, < 7/2.

Consider any cueball e = (e;0) with # > 0 and having a shallower angle than v; by “shallower”
we mean that 0 < |f| < |6,|. Moreover, we ask that e lie “further right” than v in the sense that its
footpoint, e, lie on the southeast side of the line through v in direction 6,. Compare the orbits of e
and v: When they first hit the upper-cushion, e hits to the right of v and consequently bounces off
with a shallower angle than does v. Thus, after they bounce off the floor, cueball e is still further
right, and is shallower than, v. Iterating shows that e escapes.

Were such a v to exist, this reasoning would hold for the above open set of cueballs e, which
perforce has positive volume. The inescapable conclusion is that E is empty. ¢

§3 POINCARE SECTION OF A FLOW

Imagine a large tube submerged horizontally in a river, through which water flows in some com-
plicated way. Place a wire-mesh “surface” across the upstream end of the tube—in, say, the form
of a hemisphere. Through each subregion of the mesh flows some number of gallons-per-minute,
the “flux through the surface”, which therefore induces a measure on this surface. If we place a
mesh also across the downstream end, we get a map from the upstream surface to the downstream
surface simply by watching molecules of water flow from the one to the other. Since the flow
preserves volume (water being incompressible), this “induced map” is flux-preserving.

The above description is meant to motivate the definition below, where cross-section ¥ C I’ is a
“surface”, vol(X) = 0, which is “transverse” to the flow in an appropriate sense. Let ®(*4(2) be
the set of cueballs swept out as ¥ flows for ¢ seconds. (More generally, for any subset W C R of time, let
®W (E) denote the union of ®'X, over all t € W.) The fluz of ¥ is the limiting rate that the volume of
®(04(2) grows. By this we mean

flux(2) := lim %vol(@(o’t](ﬁ)) : (10)

N0

In order to show that this limit exists in [0, o0], we employ a type of argument which is often
useful in dynamies: subadditivity. The function V[t] := vo|<CI>(0’t]Z> is subadditive because

V[t] +Vis] = voI(CID(O’t]E) + VO|((I)(t,t—|—s]2)
voI(CI>(0’t+8]2)

>
> V[t + s].

Now fix a positive t. Given any smaller positive time s, let N be the integer such that Ns > ¢ >
(N —1)s. By subadditivity, V[s] > %V[Ns]. Thus

1 1 1
— - — >
“V[s] > VIV = V]
N-11
> —— - =V[t].
- N t Y
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10 J.L. King

Sending s N\, 0 along any sequence sends the associated N to infinity, and so liminfy\ o %V[s]
dominates %V[t]. Taking a supremum over positive ¢ shows that the limit in (10) always exists
in [0, o0}, and shows that

flux(Z) = sup lvol(@(o’t](Z)) : (11a)

Figure 17 illustrates how this induced measure, flux(-), will be used to prove the conservativity
result of this article, theorem 14.

How to visualize the induced measure. An important special case is when we have a curve ¥
which is a subarc of the table’s boundary 0I', and ¥ is the set of inward-pointing cueballs with
footpoint on ¥. We can get an explicit integral for vol(X) by describing a cueball v on the boundary
in terms of “relative angle”. Write v = (v; p), where p € (=7, 5) denotes the angle that v makes
relative to the inward normal of 0I" at v. Figure 12 shows an example in which ¥ is a line-segment.

Boundary of T

FIGURE 12 In a fixed relative direction p, assume that the points of X' can be moved a distance ¢
without encountering the cushion. Then the shaded parallelogram shows the location of the
footpoints of those v in ¥ of relative angle p, after they have flowed for at most ¢ seconds.

The area of the above parallelogram is t - cos(p) times the length of ¥. Multiplying by 1/t and
then integrating over p gives

flux(X) = //cos(p) dpdv , (11b)
(v;p)€X
where “dv” denotes arclength measure along 0I' and “dp” is arclength on (—g, %)
It is routine to check that this formula remains valid for a general arc X by first approximating
the arc by line segments and then sending ¢ \ 0. This last step uses that ¥ has a first-return
function Ry : ¥ — [0, 00] which is everywhere positive, where

Ry(v):= sup{t >0 ‘ @(O’t)(v) is disjoint from 2} )

It turns out that for an arbitrary set L of cueballs, the condition Ry, > 0 is a reasonable definition
that cross-section L is “transverse” to the flow. The proposition below is certainly plausible on
physical grounds; in any case it follows from standard approximation arguments applied to (11a),
and so we omit its proof.

Flux Proposition, 13. Suppose that L C T has an everywhere positive first-return function Ry,.
Then

(a) flux(-) is a measure on the subsets of L.
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Billiards instde a cusp 11

(b) Volume-measure locally near L is the product-measure of flux cross Lebesgue-measure on
“time”. Specifically, suppose U C L is a subset whose first-return is uniformly positive,
that is, the number 7 := liminf,cu Ru(V) is positive. Then

For any S ¢ ®-™(U):  vol(S) = / flux(U N ®'S) dt .
0

Inducing a transformation. For an arbitrary cueball set X, its first-return function tells us
when a cueball returns to . The tnduced map, Tx, tells us where. It is defined on the subset of
those v € ¥ which actually return to ¥ at time Rx(v),

Ty (v) = %= (y).

(Of course if ¥ is a closed subset of T' then the domain of Ty is simply where Ry is finite.) As an illustration,
were Y. the union of the two meshes at the ends of our submerged tube, then Ty would be defined
just on the upstream surface and map it in a 1-to-1 fashion to the downstream surface.

As suggested by the physical situation of water flowing through a tube, the induced map pre-
serves flux.

(c) For an arbitrary set ¥ of cueballs, the induced map Ty, is measure-preserving wherever it

is defined: If B is included in the range of Ty, then

flux(T&~'(B)) = flux(B).

This is too is an approximation argument, achieved by splitting ¥ into countably many pieces
whose first-return functions are nearly constant and then using that ® flows at constant speed.

§4 CONSERVATIVITY ON AN INFINITE CUSP
A particular case where the induced map 7% is everywhere defined is when ¥ consists of all cueballs
on the boundary 0I'. A symbiosis exists between this induced transformation and the flow:

Transformation Tsr is conservative iff ® is conservative.

Even though Poincaré’s recurrence theorem does not apply to this transformation —the measure
it preserves being infinite because I has infinite length— nonetheless, on a finite-area table, Typ
inherits conservativity from the associated billiard low ®.

We conclude this article by turning the implication around, in that we will use an induced
transformation to prove conservativity of the flow.

Pinched-cusp Theorem, 14. The billiard flow under a pinched cusp, even one of infinite area,
is conservative.

A flow is pinched if, arbitrarily far out the cusp, there are cross-sections L of arbitrarily small
flux. So our billiard flow is pinched exactly when

liminf f(z) =0,

r—0C0
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12 J.L. King

since the value f(x) is proportional to the flux of the set of cueballs with footpoint on the vertical
line-segment going from (:1;,0) up to (x,f(:z;))
As an example of a pinched cusp of infinite area, consider

flz) = :1;[1 — sin(:z;)] + x—ll—l )

Even though for this cushion the supremum of f(x) is infinite, nonetheless the theorem asserts that
a cueball placed at a random location and then hit in a random direction will pass arbitrarily near
to its starting position and direction. In contrast, it would seem difficult to show by means of the
calculus technique of the INTRODUCTION that for this cushion there is even a single (non-periodic)
recurrent trajectory.

Squeeze Play on an Infinite Cusp. Intuitively, conservativity on a finite-area table came from
being unable to squeeze a gallon into a pint-sized bottle. This time, our bottle has infinite volume
but, being vague for a moment, it still has in some sense a pint-sized neck. Our gallon of water
will not be able to squeeze through this bottleneck because —if the gallon flows non-recurrently— it
has an intrinsic positive cross-sectional flux that can never diminish.

PROOF OF THE PINCHED-CUSP LEMMA. Supposing ® not conservative, there is some cueball set S
of positive volume and a positive time 7 so that

®lm>)(8) is disjoint from S. (15)

Moreover, S can be taken to lie to the left of some vertical line, say, left of + = 1. After deleting a
nullset we can assume that for all v € S,

limsup x—coord(CI)tV> = 400. (16)

t—o0

If not, then (by dropping to a positive-mass subset ) all cueballs in S forever stay left of some line, x = 100
say, and CI>(_°°’°°)(S) would be a ®-invariant set of finite volume—to which Poincaré Recurrence
would apply, contradicting (15).

Consequently the situation is as figure 17 illustrates. For each positive number z, let L, denote
the set of cueballs with footpoint on the vertical line-segment from (:1;, O) up to (:1;, f(:z;)) and which
point to the right, ie. their directions are between —7 /2 and 7/2. This “line” is a 2-dimensional
subset of cueball space. Because of (16), eventually 'S will have positive volume lying to the
right of L;. Thus there exists a time t¢ such that flux(¥) is positive, where

%=L, N®"(S).

(This follows from breaking L; into countably many pieces U and applying (13b) to each.) In addition, since
assertion (15) is flow invariant, we may conclude that £ N ®[7°)(2) is empty.

Strategy. We have progressed from a non-recurrent set S of positive volume to a non-recurrent
cross-section Y of positive flux. We will obtain a contradiction by examining the bad set

B:={veX|Rg(v)=o0}
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of cueballs which never come back to ¥.

y=f(x)

Bottleneck

L, L

X

Ficure 17 A pinched-cusp. To make them visible, sets 3 and B are shown thickened—they are
actually subsets of “line” Lj. The forward trajectory of a cueball v € B will never again touch
¥ (although it might conceivably hit Ly elsewhere) and will sooner or later cross any given L.
But if Ly 1s chosen to be a sufficiently small bottleneck, not all of B will be able to squeeze
through.

Every such v, as (16) reminds, eventually hits any particular line L, to the right of L;. Thus the
induced map Tpur, is defined on all of B and maps it into L,. The flow-invariance of flux now
gives the key inequality that

flux(L, ) > flux(B), for all > 1.

But flux(L,) is proportional to f(x), by (11b). Thus the above inequality will flatly contradict
that f() is pinched against the z-axis, ¢f we can rule out flux(B) being zero. In order to do this,
we now look at those cueballs whose behavior is antithetical to the bad set.

The wnfinitely-often set. Consider the set I of cueballs which, under Ty, return to ¥ infinitely
often,

I:=X-(BUTx '(B)UTy *(B)UTx *(B)U...).

Of necessity, Ts maps I into I and so Ry is finite on all of I. But I C ¥ and, since ¥ N CI)[T’OO)(Z)
is empty, we see that Ry must in fact be everywhere less than the constant 7. Consequently, no
cueball v € T could satisfy (16). Thus I is empty and, in consequence,

Y =BUT'B)UTs *B)UTs*(B)U....

~—

But flux(¥) > 0, and so some Ty~ "(B) has positive flux. The third part of the Flux Proposition,
(13¢), implies that ﬂux(B) > ﬂux(Tg_"(B)> Thus flux(B) is positive, completing the proof of the
Pinched-cusp Theorem. ¢

APPENDIX

The observation that a Poincaré-section provides a fast proof of conservativity of the billiard-flow in a convex
oo-measure cusp, arose in a discussion with my colleague Albert Fathi. That argument lead naturally to the

Math. Intelligencer, vol.17 no. 1, (1995), 8-16.
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generalization for flows on an arbitrary pinched cusp. Although it was illustrated here with a billiard flow, the
conservativity result holds mutatis mutandis for any measure-preserving continuous flow whose induced measure is
pinched. The illustrations in this article were drawn with the excellent computer facilities at the M ATHEMATICAL
SCIENCES RESEARCH INSTITUTE, whom I thank for its hospitality.

(A1) In the setting of LEMMA 9, under a continuous flow/transformation the set of recurrent points —in addition
to being a full-measure set— must be residual (must include a dense G5 set), once one adds the natural assumption
that p gives positive measure to every non-empty open set.

In contrast, if there is no such conservative invariant measure u, then the set of recurrent points need not be
residual. Nonetheless, Birkhoff established that there is at least one recurrent point under any continuous flow or
transformation on a compact space. The transformation z — z + 1 on the topological circle R U {co} shows that no
more can be guaranteed.

(A2) An unexplained coincidence occurs for flux measure in the special case where our billiard table I" is bounded
by an elliptical cushion C' := 8I'. Tt turns out that the set C of inward pointing cueballs breaks up into Tc-invariant
subsets; one for each ellipse E which is inside of, and has the same foci as, C. The invariant set consists of those
cueballs v € C whose flow trajectory will pass tangent to E before it again hits C.

This invariant decomposition of C implies that flux(-), on C, breaks up into measures parameterized by confocal
ellipses F. When suitably normalized, each of these measures turns out to the the “Poncelet C'E-measure” of [1],
which arises from what appears to be an entirely unrelated construction.

(A3) Billiard flows are a kind of geodesic flow on surfaces of only zero and infinite curvature. A stronger result
(see, for example, DoNNAY 1988) is known for the geodesic flow on the surface-of-revolution around the z-axis
generated by a differentiable f: [0,00) — R 4. If the surface is “pinched”, liminf,;_ o f(z) = 0, then every geodesic
orbit is bounded —except for the obvious ones which flow directly out the cusp.

(A4) An open and probably difficult research question is suggested by SULLIVAN’S 1982 result on the geodesic
flow ® on a cusp of constant negative curvature. Letting dist(v) denote the distance of the footpoint of v to some
chosen point on the surface, Sullivan gives an explicit speed function D(#) such that

dist(®’
limsup M =1, for a.e. v.
Paul Shields raised the tantalizing question of characterizing the finite-area cuspidal billiard tables which have such

a speed function.
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