

Differentiating a bilinear function

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu

Webpage <http://squash.1gainesville.com/>

2 March, 2022 (at 18:12)

(Below, use **VS** for *vector space*, and **IPS** for *inner-product space*.)

Prolegomenon. In this pamphlet, all VSes are *real* VSes, \mathbb{R} -VSes.

The Product Rule from calculus states:

Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable. Then so

1a: is their product, and

$$[f \cdot g]' = [f \cdot g'] + [f' \cdot g].$$

It turns out this generalizes.

For an \mathbb{R} -IPS **U**: Suppose $f, g: \mathbb{R} \rightarrow \mathbf{U}$ are

1b: diff'able fncs. Then so is $\langle f, g \rangle$, and

$$\langle f, g \rangle' = \langle f, g' \rangle + \langle f', g \rangle.$$

Also, for Physics problems in 3-dim' al Euclidean space:

Suppose $f, g: \mathbb{R} \rightarrow \mathbb{R}^3$ are diff'able. Then so are inner-product (“dot-product”) $\langle f, g \rangle$ and cross-product. They satisfy

1c: $\langle f, g \rangle' = \langle f, g' \rangle + \langle f', g \rangle$, and

$$f \times g' = f \times g' + f' \times g.$$

All these raise the question (*not* “Beg the question”, which means something different): What does it *mean* for a fnc $\mathbb{R} \rightarrow \mathbf{U}$ to be “differentiable”?

We suppose that $(\mathbf{U}, \|\cdot\|)$ is a *normed VS*. For a fnc $f: \mathbb{R} \rightarrow \mathbf{U}$ at a point $\tau \in \mathbb{R}$, we can make sense of the *difference-quotient*

1d:
$$\frac{f(\tau + h) - f(\tau)}{h}, \quad \text{for non-zero } h \in \mathbb{R}.$$

Sending $h \rightarrow 0$ might give a $\|\cdot\|$ -limit; if so, we denote the limit by $f'(\tau)$.

Consider normed VSes **U**, **V**, **X**, a fnc $\Omega: \mathbf{U} \times \mathbf{V} \rightarrow \mathbf{X}$, and a point $P := (\mathbf{u}, \mathbf{v})$ in $\mathbf{U} \times \mathbf{V}$. Then Ω is “(jointly) continuous at P ” if:

For all sequences $\mathbf{a}_n \rightarrow \mathbf{u}$ in **U**, and $\mathbf{b}_n \rightarrow \mathbf{v}$ in **V**,

1e: sequence

$$\Omega(\mathbf{a}_n, \mathbf{b}_n) \text{ tends to } \Omega(\mathbf{u}, \mathbf{v}) \text{ in } \mathbf{X}.$$

2: Product-rule Theorem. Consider normed vector-spaces **U**, **V**, **X** and differentiable functions $\alpha: \mathbb{R} \rightarrow \mathbf{U}$ and $\beta: \mathbb{R} \rightarrow \mathbf{V}$. Suppose $\llbracket \cdot, \cdot \rrbracket$ is a bilinear map $\mathbf{U} \times \mathbf{V} \rightarrow \mathbf{X}$.

If $\llbracket \cdot, \cdot \rrbracket$ is (jointly) continuous, then

$$f(t) := \llbracket \alpha(t), \beta(t) \rrbracket$$

is differentiable, and

$$* : \llbracket \alpha, \beta \rrbracket' = \llbracket \alpha, \beta' \rrbracket + \llbracket \alpha', \beta \rrbracket. \quad \diamond$$

Pf. Fix $\tau \in \mathbb{R}$ and take a non-zero h . Then $f(\tau + h) - f(\tau)$ equals

$$\llbracket \alpha(\tau + h), \beta(\tau + h) \rrbracket - \llbracket \alpha(\tau + h), \beta(\tau) \rrbracket + \llbracket \alpha(\tau + h), \beta(\tau) \rrbracket - \llbracket \alpha(\tau), \beta(\tau) \rrbracket.$$

Using linearity in each argument separately, difference $f(\tau + h) - f(\tau)$ equals

$$\llbracket \alpha(\tau + h), \frac{\beta(\tau + h) - \beta(\tau)}{h} \rrbracket + \llbracket \frac{\alpha(\tau + h) - \alpha(\tau)}{h}, \beta(\tau) \rrbracket.$$

Sending $h \rightarrow 0$ yields (*), courtesy the (joint) continuity. \diamond

Filename: Problems/Algebra/LinearAlg/bilinear-differentiability.latex

As of: Monday 28Nov2011. Typeset: 2Mar2022 at 18:12.