

Definitions. Recall that $\mathbb{N} = \{0, 1, 2, \dots\}$. A set S is *countable* if there exists an injection $S \hookrightarrow \mathbb{N}$. [This is equivalent, once S is non-void, to asking that there exists a surjection $\mathbb{N} \twoheadrightarrow S$. (AC)]

A set S is *denumerable* if it is bijective with \mathbb{N} .

Say that a polynomial $p()$ is *n-topped*, if $\text{Deg}(p) < n$. These are 3-topped polynomials: $x^2 - 2x$; $x + \sqrt{7}$; 17; zip. However $x^3 + x$ is not 3-topped.

An *intpoly* is a polynomial whose coefficients are integers. A number $\alpha \in \mathbb{R}$ is *algebraic* if it is a zero of some *non-zip* intpoly p , i.e., $p(\alpha) = 0$. The (*algebraic*) *degree of* α is the smallest $D \geq 0$ for which α is the zero of some degree- D intpoly.

For free. Here is a bijection $\sigma: 2\mathbb{N} \rightarrow \mathbb{N}$, where “ $2\mathbb{N}$ ” shall mean $\{0, 1\} \times \mathbb{N}$: For each bit b and natural ℓ , let $\sigma((b, \ell)) := 2\ell$, if $b = 0$, and $\sigma((b, \ell))$ is $2\ell + 1$, if $b = 1$. Let $\tau()$ denote the inverse function $\sigma^{-1}()$.

Useful nomenclature. For a fnc $f: X \rightarrow Y$ and point $z \in X$, let $\text{Comp}(f, z)$ be $f(z)$ —which is a value in Y .

Suppose now that f is a point in: The set of maps from X_1 to the set of maps from X_2 to ... the set of maps from X_N to B . Let

$\text{GenComp}(f, (x_1, x_2, \dots, x_N))$ mean $f(x_1)(x_2) \dots (x_N)$.

This is a value in B .

Advice. Carefully follow the writing style described on *The Checklist*. Print a copy of your essay(s) each day, so that you always have a paper copy. Each team member is responsible to understand everything that the team hands in.

β1: a Give an explicit formula and/or computer program, possibly using $\lfloor \cdot \rfloor$ or $\lceil \cdot \rceil$, for a *bijection*

$$\gamma: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N},$$

as well as a formula for its inverse-function $\delta()$. [Hint: What is the sum of the first k integers?]

b Please prove the following helpful LEMMA: If A_1, A_2, \dots are each countable (subsets of a set X), then their union $\bigcup_1^\infty A_n$ is countable.

β2: Recall, for sets D and C , that “ C^D ” denotes the set of all maps $D \rightarrow C$.

I For each three sets B, C, D give an *explicit* bijection

$$\Phi: [B^C]^D \rightarrow B^{C \times D}.$$

Make sure that your Φ works for arbitrary sets; infinite, finite (even empty). Let $\Theta() := \Phi^{-1}()$.

II Use maps σ and τ , as well as the idea of part (I), to give an particular bijection $\Upsilon: 3^{\mathbb{N}} \times 3^{\mathbb{N}} \rightarrow 3^{\mathbb{N}}$.

β3: a Let \mathbb{P}_D be the set of D -topped int polys. Let $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ be a particular bijection. (You could easily build φ from γ , but don't bother.) In terms of φ , give an *explicit* map F_D which is a bijection

$$F_D: \mathbb{P}_D \rightarrow \mathbb{Z}, \quad \text{for } D = 1, 2, 3, \dots$$

[Hint: Induction on D .]

b **Fact:** For $n \geq 0$, each degree- n polynomial has at most n zeros. Use this to prove that Y_n is *countable*, where Y_n is the set of zeros of *non-zip* n -topped int polys. [Hint: If “intpoly” is replaced by “poly” then Y_n is uncountable.]

c Prove that the set of *algebraic numbers* is countable. Conclude that there exist transcendental numbers. (Are there only one or two, or lots?)

β4: Show that a *continuous* function is determined by its values on any dense subset of its domain. That is, suppose that D is a dense subset of \mathbb{R} , and that $g, h: \mathbb{R} \rightarrow \mathbb{R}$ are continuous fncs with $g|_D = h|_D$. (I.e, their restrictions are equal.) Prove that $g = h$.

β5:

i Let $\alpha: 2^{\mathbb{N}} \rightarrow \mathbb{R}$ be some bijection, and let $\beta() := \alpha^{-1}()$. In terms of $\alpha()$ and $\beta()$, give an explicit bijection $G: \mathbb{R}^{\mathbb{N}} \rightarrow \mathbb{R}$. Please let $H := G^{-1}$. [Hint: What letter comes next in α, β, \dots ? You may want to first make $\overline{G}: [2^{\mathbb{N}}]^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$, which is related to G .]

ii Motivation: The set $\mathbb{R}^{\mathbb{R}}$ of *all* functions from \mathbb{R} to \mathbb{R} has cardinality $2^{\mathbb{R}}$. That is, $\mathbb{R}^{\mathbb{R}}$ has the same cardinality as the powerset of \mathbb{R} .

Let \mathbf{C} denote the set of *continuous* functions $\mathbb{R} \rightarrow \mathbb{R}$. Show that there exists an *injection* $\mathbf{C} \hookrightarrow 2^{\mathbb{N}}$ (equivalently, an injection into \mathbb{R}). You will want to use part (i) and (β4). [Hint: Recall that \mathbb{Q} is a countable dense subset of \mathbb{R} .]