

Ord: _____

Advanced Calc
MAA4102 & MAA5104InClass- β Prof. JLF King

4 August, 2016

β6: Please carefully write up your solutions on separate sheets of paper; make sure to circle the **true/false** below. [20 + 20 + 65 = 105 points]

A A number $\alpha \in \mathbb{R}$ is **transcendental** if ... [Hint: Do not use “algebraic” in your definition.]

B Given a set Y , a function $d: Y \times Y \rightarrow [0, \infty)$ satisfies the Triangle Inequality if ... [Hint: Quantify all variables.]

C Let $Y := \{0, 1\}^{[1..5]}$ be the set of bit-tuples $\mathbf{b} = (b_1, b_2, b_3, b_4, b_5)$. Define $m: Y \times Y \rightarrow [0, \infty)$ by: $m(\mathbf{a}, \mathbf{a}) := 0$; and when $\mathbf{a} \neq \mathbf{b}$ then $m(\mathbf{a}, \mathbf{b}) := j$, where j is the *smallest* (first) index at which $a_j \neq b_j$.

Circle **True** or **False**: “This function m satisfies the Triangle Inequality.”

The significant part: Give a *proof* of what you claimed above.

β7: Please fill in the blanks. *Show no work*; there is no partial credit for this question.

i Georg Ferdinand Ludwig Philipp developed the theory of (infinite) cardinals, starting his work in the 1900's.

This powerset, $\mathcal{P}(\{\text{Snow White's 7 Dwarfs}\})$, has many elements.

ii Let $\mathbb{I} := \mathbb{R} \setminus \mathbb{Q}$ be the irrationals, and let \mathbb{A} denote the set of algebraic numbers. Put each set, below, into its correct “cardinality pocket”.

- (a) $\mathbb{R} \times \mathbb{R}$. (b) $\mathbb{R}^{\mathbb{N}}$. (c) $[[\mathbb{N}^{\mathbb{N}}]^{\mathbb{N}}]^{\mathbb{N}}$. (d) \mathbb{A}^3 . (e) $\mathbb{I}^{\mathbb{Q}}$. (f) $\mathbb{Q}^{\mathbb{I}}$.
(g) $\mathbb{Q}^{\mathbb{Q}}$.

\mathbb{N} : $\mathcal{P}(\mathbb{R})$:
 \mathbb{R} : $\mathcal{P}(\mathcal{P}(\mathbb{R}))$:

iii Consider \mathbb{R} , equipped with the usual metric.

a These *closed* sets $A_n :=$, when unioned, form a set $\bigcup_{n=1}^{\infty} A_n =$ which is not closed.

b Give an example of a set,

$$\left\{ \text{.....} \in \mathbb{R} \mid \text{.....} \right\},$$

which has *exactly one* accumulation point:

iv Fix a MS (Ω, d) . **a** For a point $p \in \Omega$, define the ball

$$\text{Ball}_{17}(p) := \left\{ \text{.....} \in \Omega \mid \text{.....} \right\}.$$

b Suppose that U, V_1, V_2, \dots are open sets of Ω , and E, K_1, K_2, \dots are closed sets. **Circle** those of the following sets which are guaranteed to be Ω -closed.

$$E \setminus U. \quad U \setminus E. \quad K_1 \setminus E. \quad \bigcap_{n=1}^{\infty} K_n.$$

$$\Omega \setminus \left[\bigcup_{n=1}^{\infty} V_n \right]. \quad E \cup K_1. \quad E \cap K_1. \quad [U \cap V_1]^c$$

End of InClass- β

Total: _____ 0pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor (or his colleague).*
Name/Signature/Ord: _____

Ord: _____