Bertrand’s Postulate

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl edu
Webpage http://squash.1gainesville.com/

1 February, 2022 (at 20:20)

Background. Proofs are from Shoup, from

Wikipedia and from my notes.

The superscript ‘@’. An inequality OTForm
[vlargen: f(n) <59 h(n)} means

YU > 5, Magen: f(n) < U-h(n).
Similarly, [Vlargen fn) > [% } means
vpositiveL < %) vlargen f(n) > L- h(n) :

Notice that U and L are quantified before n.

Clumps. For p prime, let Divlog,(1500) denote
the maximum natnum L st. p” e 1500. Another no-
tation for this is p” ¢ 1500. So Divlogs(1500) = 3.

For a non-zero integer B, the “p-clump of B”,
Clmp(B), is the largest power of p which divides B.
So Clms(1500) is 125, and Clmg(1500) = 4.

Evidently Clm,(B) = pPvogs(B). and B’s clumps
multiplied-together make B.

1: Lemma. Fix a prime p and natnum K. Then
K
Divlogp (K') = Zjoil LﬂJ . (Exercise) O

2: Prop'n. Va € R: |2a] — 2|«] is zero or one.

We denote the set of prime numbers by P. Below,
“p” ranges over the prime numbers. All following def-
initions are for real z, although usually z will be an
integer.

First the “Product Of Primes”,

) = Hp.

p: p<z

PrOP(N

Its logarithm is the famous Chebyshev theta fnc:
> log(p)
p: p<z

Generalizing PrOP. When S is a set of reals, let
PrOP(S) mean the product of the primes in S.

¥(z) = log(PrOP(N)) =
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3: PowFour Lemma. For each x > 1: PrOP(z) < 4*.
¥ (z) < log(4) -z, O

in other words:

Proof. WLOG, z is an integer .

PrOP(1) = 1 < 4.
CASE: N =2 PrOP(2) = 2 < 42

[CASE: N > 2 and N is everﬂ

PrOP(N) = PrOP(N—

< 4N71

1), since N isn’t prime,

, by induction,

which is less than 4%.

[N > 2 and N is odd] Write N = [2H + 1]. Induc-
tion gives (since H+1 < N) that
ProP([1 . H+1]) < 4t

so our goal is to show that

3:  PrOP((H+1 . N)) < 4

Flipping a coin N times, the number of coin-flip se-
quences is (letting j, k range over N)

= 2 jhhen <]Nk>

(H, ]I\;Jrl) + (H+]¥ H) =2 (Z) .

(14 1]V

v

Divide by 2, then exchange sides, to get (g) < 4H.
Each prime in (H+1 .. N] divides (}), so

PrOP((H+1 .. N]) o (3)) -

Since (g) is positive, PrOP((H—H . N]) < (g)
Hence (?7). ¢

Prime-number Thm and related results

Use 7(x) for the number of primes in [1,z]. We'll es-
timate it in terms of log( 3 Differentiating this latter
gives:

The fnc z — @ is strictly-increasing on
the [e, 00) interval.
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5: Chebyshev's Theorem. For each posint n > 2:
. log(2) n
Haz > =2 .
a w(n) > > Tog(n)

Conversely, for each real U>log(4):

log(z)

5b: Viarge T m(x) < U-

Proof of (5a). Sound-bite: Produce a big integer B all
of whose clumps are small. Since the clumps multiply
to B, and they are small, there must be many clumps.
Hence many small primes divide B. So many small
primes exist. Thus w(z) must be big.

Even n: Write 2N :=n. Let B = (1\2,]\][\[) Easily
B > 2V,

Let T denote the number of distinct primes which
divide B; each such p < 2N, so

6: m(2N) > T.

Lower-bnding  T. Evidently Divlog, ( ( 1\271\][\[) )

equals Divlog,([2N]!) — 2-Divlog,(N!). By (1),
then,

Divlog,(B) = Z:il VNJ - inl {NJ

El »
= > (1= -2,

where L is |log,(2N)|. By (2), each summand is ei-
ther 1 or 0. Thus log,(2N) > Divlog,(B). So

7 2N > Clmp(B),

since pPVogr(B) is Clm,(B). Multiplying the B-
clumps together gives B, so [2N]T > B. Hence
[2N]T > 2N, Consequently T - log(2N) > log(2) - N.
Dividing yields (note N > 0, so log(2N) # 0)

log(2) 2N def log2) M

T = . .
2 log(2N) 2 log(n)

Courtesy (6), this is the desired (5a).

Prime-number Thm and related results
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Odd n > 3: Since n+1 is even, thus not prime,
_ log(2) _ "l
= 1) > . .
7(n) m(n+l) > =5 Tog(nt 1)
Now use (4). ¢

Proof of (5b). We will use Thm 10, below, being careful
not to argue circularly.
By (10), there is a real, 17, and z so that Vo > zq:

m(r) < 1+ lgg((xx))_ By the PowFour Lemma, then,

x
17 -log(4) - ——.

&) log() ¢
Chebyshev's thm gives a growth rate on the nth-
prime p,,.

8: Theorem. Fix posreals L<U such that Vjarge!:
21 14

11
s 7 = U@'log(f)

m(x) <

l
|
log(¢)
Then Vjargen:

1y 2
[§]7 -nlogn) < p, <

n =

[%]69 -nlog(n). ¢

Pfof (11). Fix a U>U with Marge ¢ : 7(0) < U - =X

log(f) "
Taking n sufficiently large, then,
def
n = w(p,) < U ey -
Cross-multiplying gives & - nlog(p,) < p,. But
n < py, so log(n) < log(p,). Thus
7 -nlog(n) < p,. ¢

Proof Of(QZIZ) Suppose Vlargeg : 71—(6) > % ) loge(é)' We

want to establish (21), with the constant being 5%.
Define K, by p,, = K, -nlog(n). Let S be the set

of n with | K, > 5.001 | FTSOC, suppose S is infinite.

For large n€S, then, 1 - logp(’; 5 < ©(py) & . So
1 log(Knm, log(n)) . log(Kn log(n)) 1
5 = Kplog(n) Kplog(n) Ky

Note that [K,, log(n)] — oo, as n — oo, since {K,, }7°
is bnded below, and log(n) — oo. Apply to each side

limsup,,_, ., {but only forn € Sj, to obtain that

1 1 1 note 1

= < limsup — < —

5 = HWSUDET = 5o01
nes

This contradiction shows S must have been finite! ¢
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9: Lemma. Fix a positive § < 1. Then 2° = o(logx(ac))'
Consequently,

Ox: ? = o(n(x)). O

Proof. Use I’'Hopital’s rule. For (9%), note that (5a)
implies @ = O(m(x)). ¢

10: Asymptotic 7,1 Thm. Indeed,

A m(x) > lfg(fl)‘) , forallz>1.
G
2 m(r) =< og(x) as T — o0. O

Proof. When p < x, necessarily log(p) < log(x). So

> log(x) =

pe(l..a]

I(z) < log(x) - ().

Because of (10.1), ISTFix a posreal € and show

I(z)

[1+ €]

to establish the (10.2) asymptotics. Rewritten, our
goal is

°

OB > r(z) — ofn(x)) .

So fix a positive <1 and set L := x°. Thus

3 log(L) = dlog(a) - [w(x) — (L))

pe(L..x]

d(x) >

Hence % - lfg(zvz)) > w(x) — n(L).

but show that 7(L) is o(m(z)). But 7(L) < L = 9.
And (9%) is our knight in shining armor. ¢

Therefore, we need

11: Coro. There is a positive constant C' so that

Viargen: C-n < 9(n). O

Proof. Combine (10.2) with (5a). ¢

Shoup’s proof of Bertrand’s postulate
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n 1

th . : ._
The n*™ harmonic number is H, = ijlj,

for n a posint. Easily,

B Vn:
It V>0:

Hn > Hn—l > 10g(”> > Hn —1.
x >log(l+z).

Euler proved that Zp% = oo. His argument essen-
tially shows (12), below.

12: Thm. For N a posint: > ﬁ > loglog(N).

p: p<N
Hence, Y. 1 > loglog(N) — O(1). O
p<N P
Proof. Each n < N is some product of p;“, over

primes p; < N. So % has form [],<x ﬁ. Thus

1 1 1
Hy < [y [l+5+?+§+”'}
And1+%+pi2+...: —1 = 1+ 53 By (1), then,
P
loglog(N) <log(Hn) < Y log(1+ ﬁ) Hence
p<N
by (1) 1
loglog(N) < ZPSN [;] . ¢

Shoup’s proof of Bertrand’s postulate

Let T,, = m(2n) —m(n). The PNT suggests that

T, ~ m. We will show this weaker stmt.

13: Bertrand's Density Postulate. For each posint N:

1 N
131: Ty > - — .
f N = 3 log(2N) v

Rem. It will suffice to produce a constant U > % st.

. N N
13 Ty > U Ko — o(y),

then verify (131) for finitely many values of N. O
Proof. We use notation from (5a) and its proof.

Each prime p ¢ B produces a clump Clm, =
pPVIogs(B) - Given an interval J C (1..2N], let J be
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the product of the p-clumps over all p € J. We will
show that (proof is currently omitted)

(1.v2N] <  [2N]Y¥V,
(VaN L3N] < 4V,
GN. N = 1
(N.2N] < [2N]T.

But B is the product of its clumps, so
2
[2N]T . [2N]V2N . 43N] > B.
A simple induction shows that (25) > 54", Thus

[2N]T+1+\/2N >

AN
So [T + 14+v2N]-log(2N) > log(4) - +N. Thus
T > log(4) -——— — [14+V2N].

And this is what we needed in (137). ¢

Logarithmic Integral

Following Shoup, define™!

. (1
Li(z) = /2 mdt

Let’s use L'Hépital's rule to show that

log(z)

14: Li(z) =

Abbrev log(z) by L. So éi—x(%) =
Therefore

And 1 —% — 0 as ¢ — oo. Hence |'Hépital's
yields (14).

“1Wikipedia calls this version the “Offset logarithmic inte-
gral”, and uses f0°° for its “logarithmic integral”.

Erdss’ proof of Bertrand’s postulate
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Erdés’ proof of Bertrand’s postulate

Assume there is a CEX: an integer N > 2 such that
there is no prime number in (N ..2N).

If N € [2..2048), then one of the prime numbers 3,
5, 7,13, 23, 43, 83, 163, 317, 631, 1259 and 2503 (each
being less than twice its predecessor), call it p, will satisfy
N < p < 2N. Therefore WLOG N > 2048.

Proof, when N > 2048. Note that

2N IN
4N = 11 = Z<k>

k=0

Since (2]9[ ) is the largest term in the sum, we have that

4N _ (2N
2N+1 = \ N )~
Define R := R(p, N) to be highest integer x, such that

p* divides (%{,V) Applying (1) to K := 2N and K =
N yields

R = Divlog,([2N]!) — 2 Divlog,(N!)

gl o R v

] g

= Zil“%J _2{%” :

But each term
2N N
Eiar
p] p]
1 N

can either be 0 (when & mod1 < i) or 1 (when &
p p

J J

mod 1 > 1). Furthermore, all terms with
log(2N
- { og( )J
log(p)

are 0. Therefore

2=t |

and we get:

p* = exp(R - log(p))

exp <{1T§§;\;)J log(p)> < 2N.

IN
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For each p > v2N, necessarily

Sy

or

- [2]-1(2)

Remark that (%{,V ) has no prime factors p such that:
e 2N < p, because 2N is the largest factor.

o N < p<2N, because we assumed there is no such
prime number.

. % < p < N, because (since N > 5) which gives us

=[]l < 2-s -0

];Jsch prime factor of (2]]\>7 ) is therefore not larger than
T.

Note that (%V ) has at most one factor of every
prime p > V2N. As p* < 2N, the product of p*

over all other primes is at most [2N]V2V . Since (2]@7)

is the product of p* over all primes p, we get that

4N - 2N
IN+1 — \ N

IN

%
2N ] p
peP
= [2N]V2N . (5

Using our lemma, $(N) < N - log(4):

Since we have [2N + 1] < [2N]2, automatically

4% < [2N]2+v2N.

Also 2 < —V%N (since N > 18): Consequently,

=

43 < [2N]3V2NV

Taking logarithms produces

V2N -log(2) < 4-log(2N).

Erdss’ proof of Bertrand’s postulate

Page 5 of 5

Substituting 2% for 2/NV:
¢
z s
PR
This gives us t < 6 and the contradiction that

22t 22-6
N = 5 < 0t 9048 .

Thus no counterexample to the postulate is possible. 4
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