
Bertrand’s Postulate

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu
Webpage http://squash.1gainesville.com/

1 February, 2022 (at 20:20)

Background. Proofs are from Shoup, from
Wikipedia and from my notes.

The superscript ‘⊕’. An inequality OTForm�� ��∀largen : f(n) ≤ 5⊕ · h(n) means

∀U > 5, ∀largen : f(n) ≤ U · h(n) .

Similarly,
�
�

�
�∀largen : f(n) ≥ [13 ]

	 · h(n) means

∀positiveL < 1
3 , ∀largen : f(n) ≥ L · h(n) .

Notice that U and L are quantified before n.

Clumps. For p prime, let Divlogp(1500) denote
the maximum natnum L st. pL •| 1500. Another no-
tation for this is pL •|| 1500. So Divlog5(1500) = 3.

For a non-zero integer B, the “p-clump of B ” ,
Clmp(B), is the largest power of p which divides B.
So Clm5(1500) is 125, and Clm2(1500) = 4.

Evidently Clmp(B) = pDivlogp(B); and B’s clumps
multiplied-together make B.

1: Lemma. Fix a prime p and natnum K. Then

Divlogp
(
K!
)
=
∑∞

j=1

⌊
K

pj

⌋
. (Exercise) ♦

2: Prop’n. ∀α ∈ R: b2αc − 2bαc is zero or one. ♦

We denote the set of prime numbers by P. Below,
“p” ranges over the prime numbers. All following def-
initions are for real x, although usually x will be an
integer.

First the “Product Of Primes” ,

PrOP(N) :=
∏

p : p≤x
p .

Its logarithm is the famous Chebyshev theta fnc:

ϑ(x) := log
(
PrOP(N)

)
=

∑
p : p≤x

log(p) .

Generalizing PrOP. When S is a set of reals, let
PrOP(S) mean the product of the primes in S.

3: PowFour Lemma. For each x ≥ 1: PrOP(x) < 4x.
in other words: ϑ(x) < log(4) · x, ♦

Proof. WLOG, x is an integer N .�� ��Case: N = 1 : PrOP(1) = 1 < 41.�� ��Case: N = 2 : PrOP(2) = 2 < 42.�� ��Case: N > 2 and N is even

PrOP(N) = PrOP(N−1) , since N isn’t prime,

< 4N−1 , by induction,

which is less than 4N .�� ��N > 2 and N is odd Write N := [2H + 1]. Induc-
tion gives (since H+1 < N) that

PrOP
(
[1 .. H+1]

)
< 4H+1 ,

so our goal is to show that

PrOP
(
(H+1 .. N ]

) ?
≤ 4H .3′:

Flipping a coin N times, the number of coin-flip se-
quences is (letting j, k range over N)

[1 + 1]N =
∑

j+k=N

(
N

j, k

)
≥
( N
H, H+1

)
+
( N
H+1, H

)
= 2 ·

(N
H

)
.

Divide by 2, then exchange sides, to get
(N
H

)
≤ 4H .

Each prime in (H+1 .. N ] divides
(N
H

)
, so

PrOP
(
(H+1 .. N ]

)
•|
(N
H

)
.

Since
(N
H

)
is positive, PrOP

(
(H+1 .. N ]

)
≤

(N
H

)
.

Hence (??′). �

Prime-number Thm and related results

Use π(x) for the number of primes in [1, x]. We’ll es-
timate it in terms of x

log(x) . Differentiating this latter
gives:

The fnc x 7→ x
log(x) is strictly-increasing on

the [e,∞) interval.
4:
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5: Chebyshev’s Theorem. For each posint n ≥ 2:

π(n) ≥ log(2)
2 · n

log(n)
.5a:

Conversely, for each real U>log(4):

∀large x : π(x) ≤ U · x

log(x)
.5b: ♦

Proof of (5a). Sound-bite: Produce a big integerB all
of whose clumps are small. Since the clumps multiply
toB, and they are small, there must be many clumps.
Hence many small primes divide B. So many small
primes exist. Thus π(x) must be big.

Even n: Write 2N := n. Let B :=
( 2N
N,N

)
. Easily

B ≥ 2N .

Let T denote the number of distinct primes which
divide B; each such p ≤ 2N , so

π(2N) ≥ T .6:

Lower-bnding T. Evidently Divlogp

(( 2N
N,N

))
equals Divlogp

(
[2N ]!

)
− 2 ·Divlogp

(
N !
)
. By (1),

then,

Divlogp(B) =
∑∞

j=1

⌊
2N

pj

⌋
− 2

∑∞
j=1

⌊
N

pj

⌋
=

∑L

j=1

[⌊
2N
pj

⌋
− 2

⌊
N
pj

⌋]
,

where L is
⌊
logp(2N)

⌋
. By (2), each summand is ei-

ther 1 or 0. Thus logp(2N) ≥ Divlogp(B). So

2N ≥ Clmp(B) ,7:

since pDivlogp(B) is Clmp(B). Multiplying the B-
clumps together gives B, so [2N ]T ≥ B. Hence
[2N ]T ≥ 2N . Consequently T · log(2N) ≥ log(2) ·N .
Dividing yields (note N > 0, so log(2N) 6= 0)

T ≥ log(2)
2 · 2N

log(2N)
def
== log(2)

2 · n

log(n)
.

Courtesy (6), this is the desired (5a).

Odd n ≥ 3: Since n+1 is even, thus not prime,

π(n) = π(n+1) ≥ log(2)
2 · n+1

log(n+1)
.

Now use (4). �

Proof of (5b).We will use Thm 10, below, being careful
not to argue circularly.

By (10), there is a real, 1+, and x0 so that ∀x ≥ x0:
π(x) ≤ 1+ · ϑ(x)

log(x) . By the PowFour Lemma, then,

π(x) ≤ 1+ · log(4) · x

log(x)
. �

Chebyshev’s thm gives a growth rate on the nth-
prime pn.

8: Theorem. Fix posreals L≤U such that ∀large `:

L	 · `

log(`)

1†
≤ π(`)

2†
≤ U⊕ · `

log(`)
.

Then ∀largen:[
1
U

]	 · n log(n) 1‡
≤ pn

2‡
≤

[
1
L

]⊕ · n log(n) . ♦

Pf of (1‡). Fix a U>U with ∀large ` : π(`) ≤ U · `
log(`) .

Taking n sufficiently large, then,

n
def
== π(pn) ≤ U · pn

log(pn)
.

Cross-multiplying gives 1
U · n log(pn) ≤ pn. But

n ≤ pn, so log(n) ≤ log(pn). Thus
1
U · n log(n) ≤ pn . �

Proof of (2‡). Suppose ∀large ` : π(`) ≥ 1
5 ·

`
log(`) . We

want to establish (2‡), with the constant being 5⊕.
Define Kn by pn = Kn · n log(n). Let S be the set

of n with
�� ��Kn ≥ 5.001 . FTSOC, suppose S is infinite.

For large n∈S, then, 1
5 ·

pn
log(pn)

≤ π(pn)
def
== n. So

1
5 ≤

log
(
Kn·n log(n)

)
Kn log(n) =

log
(
Kn log(n)

)
Kn log(n) + 1

Kn
.

Note that [Kn log(n)]→∞, as n→∞, since {Kn}∞1
is bnded below, and log(n)→∞. Apply to each side
limsupn→∞,

�� ��but only for n ∈ S , to obtain that

1
5 ≤ limsup

n→∞
n∈S

1
Kn

note
≤ 1

5.001 .

This contradiction shows S must have been finite! �
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9: Lemma. Fix a positive δ < 1. Then xδ = o
(

x
log(x)

)
.

Consequently,

xδ = o
(
π(x)

)
.9∗: ♦

Proof. Use l’Hôpital’s rule. For (9∗), note that (5a)
implies x

log(x) = O(π(x)). �

10: Asymptotic π,ϑ Thm. Indeed,

π(x) ≥ ϑ(x)

log(x)
, for all x > 1..1:

π(x) � ϑ(x)

log(x)
, as x→∞..2: ♦

Proof. When p ≤ x, necessarily log(p) ≤ log(x). So

ϑ(x) ≤
∑

p∈(1 .. x]
log(x) = log(x) · π(x) .

Because of (10.1), ISTFix a posreal ε and show

[1 + ε]
ϑ(x)

log(x)

?
≥ [1− o(1)] · π(x) ,

to establish the (10.2) asymptotics. Rewritten, our
goal is

[1 + ε] · ϑ(x)
log(x)

?
≥ π(x)− o

(
π(x)

)
.

So fix a positive δ<1 and set L := xδ. Thus

ϑ(x) ≥
∑

p∈(L .. x]
log(L) = δlog(x) · [π(x)− π(L)] .

Hence 1
δ ·

ϑ(x)
log(x) ≥ π(x)− π(L). Therefore, we need

but show that π(L) is o(π(x)). But π(L) ≤ L = xδ.
And (9∗) is our knight in shining armor. �

11: Coro. There is a positive constant C so that

∀largen : C · n ≤ ϑ(n) . ♦

Proof. Combine (10.2) with (5a). �

The nth harmonic number is Hn :=
∑n
j=1

1
j ,

for n a posint. Easily,

∀n : Hn ≥ Hn−1 ≥ log(n) ≥ Hn − 1 .†:
∀x > 0: x ≥ log(1 + x) .‡:

Euler proved that
∑

p
1
p =∞. His argument essen-

tially shows (12), below.

12: Thm. For N a posint:
∑

p : p≤N

1
p−1 ≥ loglog(N).

Hence,
∑

p≤N

1
p ≥ loglog(N) − O(1). ♦

Proof. Each n ≤ N is some product of pjej , over
primes pj ≤ N . So 1

n has form
∏

p≤N
1

pe(n) . Thus

HN ≤
∏

p≤N

[
1 +

1

p
+

1

p2
+

1

p3
+ . . .

]
.

And 1 + 1
p + 1

p2 + . . . = 1
1− 1

p
= 1 + 1

p−1 . By (†), then,

loglog(N) ≤ log(HN ) ≤
∑

p≤N
log
(
1 + 1

p−1
)
. Hence

loglog(N)
by (‡)
≤

∑
p≤N

[ 1

p−1

]
. �

Shoup’s proof of Bertrand’s postulate

Let Tn := π(2n)− π(n). The PNT suggests that
Tn ≈ n

log(2n) . We will show this weaker stmt.

13: Bertrand’s Density Postulate. For each posint N :

TN ≥ 1

3
· N

log(2N)
.13†: ♦

Rem. It will suffice to produce a constant U > 1
3 st.

TN ≥ U · N
log(2N) − o

(
N

log(2N)

)
,13‡:

then verify (13†) for finitely many values of N . �

Proof. We use notation from (5a) and its proof.
Each prime p •| B produces a clump Clmp :=

pDivlogp(B). Given an interval J ⊂ (1 .. 2N ], let J be
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the product of the p-clumps over all p ∈ J . We will
show that (proof is currently omitted)

(1 ..
√
2N ] ≤ [2N ]

√
2N ;

(
√
2N .. 2

3N ] ≤ 4[
2
3N ] ;

(23N .. N ] = 1 ;

(N .. 2N ] ≤ [2N ]T .

But B is the product of its clumps, so

[2N ]T · [2N ]
√
2N · 4[

2
3N ] ≥ B .

A simple induction shows that
(2n
n

)
≥ 1

2n · 4
n. Thus

[2N ]T+1+
√
2N ≥ 4[

1
3
N ] .

So [T + 1+
√
2N ] · log(2N) ≥ log(4) · 13N . Thus

T ≥ log(4) · 1
3

N

log(2N)
−
[
1+
√
2N

]
.

And this is what we needed in (13‡). �

Logarithmic Integral

Following Shoup, define♥1

Li(x) :=

∫ x

2

1

log(t)
dt .

Let’s use L’Hôpital’s rule to show that

Li(x) � x

log(x)
.14:

Abbrev log(x) by L. So d
dx

(
x
L

)
=

1·L−x· 1
x

L2 = 1
L −

1
L2 .

Therefore[
x

log(x)

]′[
Li(x)

]′ =
1
L −

1
L2

1
L

= 1 − 1

L
.

And 1 − 1
L → 0 as x → ∞. Hence l’Hôpital’s

yields (14).

♥1Wikipedia calls this version the “Offset logarithmic inte-
gral”, and uses

∫∞
0

for its “logarithmic integral”.

Erdős’ proof of Bertrand’s postulate

Assume there is a CEX: an integer N ≥ 2 such that
there is no prime number in (N .. 2N).

If N ∈ [2 .. 2048), then one of the prime numbers 3,
5, 7, 13, 23, 43, 83, 163, 317, 631, 1259 and 2503 (each
being less than twice its predecessor), call it p, will satisfy
N < p < 2N . Therefore WLOG N ≥ 2048.

Proof, when N ≥ 2048. Note that

4N = [1 + 1]2N =
2N∑
k=0

(
2N

k

)
.

Since
(2N
N

)
is the largest term in the sum, we have that

4N

2N + 1
≤
(
2N

N

)
.

Define R := R(p, N) to be highest integer x, such that
px divides

(2N
N

)
. Applying (1) to K := 2N and K :=

N yields

R = Divlogp
(
[2N ]!

)
− 2 ·Divlogp

(
N !
)

=
∑∞

j=1

⌊
2N

pj

⌋
− 2

∑∞
j=1

⌊
N

pj

⌋
=

∑∞
j=1

[⌊
2N
pj

⌋
− 2

⌊
N
pj

⌋]
.

But each term ⌊
2N

pj

⌋
− 2

⌊
N

pj

⌋
can either be 0 (when N

pj mod 1 < 1
2
) or 1 (when N

pj

mod 1 ≥ 1
2
). Furthermore, all terms with

j >

⌊
log(2N)

log(p)

⌋
are 0. Therefore

R ≤
⌊
log(2N)

log(p)

⌋
,

and we get:

pR = exp
(
R · log(p)

)
≤ exp

(⌊
log(2N)

log(p)

⌋
log(p)

)
≤ 2N .
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For each p >
√
2N , necessarily⌊
log(2N)

log(p)

⌋
≤ 1

or

R =

⌊
2N

p

⌋
− 2

⌊
N

p

⌋
.

Remark that
(2N
N

)
has no prime factors p such that:

• 2N < p, because 2N is the largest factor.

• N < p ≤ 2N , because we assumed there is no such
prime number.

• 2N
3 < p ≤ N , because (since N ≥ 5) which gives us

R =

⌊
2N

p

⌋
− 2

⌊
N

p

⌋
= 2− 2 = 0 .

Each prime factor of
(2N
N

)
is therefore not larger than

2N
3 .
Note that

(2N
N

)
has at most one factor of every

prime p >
√
2N . As pR ≤ 2N , the product of pR

over all other primes is at most [2N ]
√
2N . Since

(2N
N

)
is the product of pR over all primes p, we get that

4N

2N + 1
≤
(
2N

N

)
≤ [2N ]

√
2N ·

2N
3∏

p∈P
p

= [2N ]
√
2N · eϑ(

2N
3

) .

Using our lemma, ϑ(N) < N · log(4):

4N

2N + 1
≤ [2N ]

√
2N · 4

2N
3

Since we have [2N + 1] < [2N ]2, automatically

4
N
3 ≤ [2N ]2+

√
2N .

Also 2 ≤
√
2N
3 (since N ≥ 18): Consequently,

4
N
3 ≤ [2N ]

4
3

√
2N .

Taking logarithms produces
√
2N · log(2) ≤ 4 · log(2N) .

Substituting 22t for 2N :

2t

t
≤ 8 .

This gives us t < 6 and the contradiction that

N =
22t

2
<

22·6

2
note
=== 2048 .

Thus no counterexample to the postulate is possible.�
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