

Here some some problems. This is neither indicative of the length nor the format of the exam. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

P1: Show no work.

a DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is *exact*, where

$$\mathcal{N}(x, y) := [7 + e^x] \quad \text{and} \quad \mathcal{M}(x, y) := e^x[y - 2x].$$

Its soln $y = y(x)$ satisfies $\mathbf{F}(x, y(x)) = \text{Const}$, where $\mathbf{F}(x, y) =$

b DE $[2xy \cdot \frac{dy}{dx}] + [2 + 3x]y^2 = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc

$$W(x) =$$

gives a *new* DE which is exact. **Did you Check?**

c A soln to $[f'' + f'](x) = 2x$ is **polynomial** $f(x) =$. Using parameters α and β , then, the *general* solution to $[h'' + h'](x) = 2x$ is $h_{\alpha, \beta}(x) =$.

And the h with $h(0) = 1$ and $h'(0) = 0$ is $h(x) =$

d A set $\mathcal{S} := \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ of vectors is **linearly independent** if [Imagine 4 lines on which to write].

e A fnc $g(x, y, z)$ is **homogeneous** if

[Imagine 4 lines on which to write].

f Function $g(t, x) := \cos(t^2 + x^2)/[t^2 + x^2]$ is **homogeneous**: [Circle True or False] **T** **F**

g Matrix-product $\begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} 7 & w \\ 2 & 1 \end{bmatrix} =$

With $\mathbf{A} := \begin{bmatrix} 2 & -3 \\ 4 & 5 \end{bmatrix}$, then the $(2, 1)$ -entry of \mathbf{A}^{-1} is

h The square-roots of $2i$ are \pm

A particular cube-root of $64i$ is $R \cdot e^{i\theta}$, for positive reals $R =$ and $\theta =$

i In \mathbb{R} : $[1 + i]^{86} = \left[\dots \right] + i \cdot \left[\dots \right]$.

[Hint: Multiplying complexes multiplies their modulii, and adds their angles. You may use sin and cos if you wish.]

OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines. **Do not** restate the question.

P2: Brine with $5 \frac{\text{lb}}{\text{gal}}$ salt flows at rate $1 \frac{\text{gal}}{\text{min}}$ into a tank that initially held 100gal of $2 \frac{\text{lb}}{\text{gal}}$ -salt brine. The tank is well-mixed, and brine is flowing *out* at rate $3 \frac{\text{gal}}{\text{min}}$. So the tank will empty in

minutes.

At time t , let $\sigma(t)$ denote the tank-salinity [in lb/gal] and use $y(t)$ for the total number of pounds of salt in the tank.

Explain how to derive a DE for $y()$. Don't just pull a DE out of the air; **explain**, using *Text* and *Pictures*, how it comes from the physical situation. Now re-write the DE in linear-DE form. Use FOLDE to solve the DE. Dividing by the amount of water in the tank at time t , gives this formula for the salinity:

$$\sigma(t) = \left[\dots \right] \frac{\text{lb}}{\text{gal}}.$$

As the tank approaches empty, its salinity approaches $\left[\dots \right] \frac{\text{lb}}{\text{gal}}$. Do Not approximate.

P3: Fnc $y = y(t)$ solves DE

$$\frac{dy}{dt} = \frac{3t - y + 1}{t + y + 3}.$$

Showing all the steps, write an essay deriving an explicit or implicit soln $y_\alpha(t)$.