

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by **9:30AM, Monday, 27Mar2006**.

B1: Short answer: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

[z] In Fall2006, there will be a continuation NT course covering topics in Cryptography, Primality testing, Factorization algorithms, Diophantine eqns and other topics of chosen by students. one: **True** **Oui** **Da**
Yes *Uh, Did I miss something??*

[a] $y = \dots$, where $8y \equiv_{15} 7$, $17y \equiv_{21} 13$, $4y \equiv_{35} 1$. [For next few probs, consider “ $\text{Gcd}(M_j, M_i) \mid [T_j - T_i]$ ” method.]

[b] There are $N = \dots$ eggs in a basket. If the eggs are removed from the basket 2, 3, 4, 5 and 6 at a time, there remain 1, 2, 3, 4 and 5 eggs in the basket, respectively. Were the eggs removed 7 at a time, none would remain. (Brahmagupta, circa 600 A.D.)

[c] Use CRT to produce all RONOs (*square Root Of Negative One*), modulo 1105. [Hint: $1105 = 5 \cdot 13 \cdot 17$.]
RONOs = $\dots \in [1..1105]$.

B2:

i Show all steps, except the $\frac{1}{2}$ tables, to compute a magic tuple **G** so that $g: \mathbb{Z}_5 \times \mathbb{Z}_6 \times \mathbb{Z}_7 \rightarrow \mathbb{Z}_{210}$ is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \langle z_1 G_1 + z_2 G_2 + z_3 G_3 \rangle_{210}.$$

ii Consider poly $h(x) := [x-2][x-32][x-8]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 5, 6, 7$, displaying the *results* in a nice table. (Do **not** show work for this step.)

Now use your ring-iso to compute *all* solns x to $h(x) \equiv_{210} 0$, displaying the results in a table which shows which 3tup each came from. There are (not counting multiplicities) $K := \dots$ many solns.

Explain your method well; then show one computation giving a root *different* (mod 210) from 2, 32, 8.

B3: Solve LeVeque's #7P63, but rename a, b, n to A, B, N .

B4: **[α]** Give an explicit soln with $\vec{R} := (4, 1, 2, 3)$.

[β] Five guys on a deserted island have already collected a lotta coconuts. On consecutive days $k = 0, 1, 2, \dots, N$, a guy gets up early, throws R_k many (a natnum) coconuts to the monkey, and the remaining pile miraculously divides evenly by 5. He hides one-fifth, and pushes the remaining 4 piles together.

With knowledge of the *remainder sequence*

$$\vec{R} = (R_1, R_2, \dots, R_N) :$$

How many coconuts in the original pile P_0 ?

End of Home-B

B1: 80pts

B2: 95pts

B3: 95pts

B4: 120pts

Total: 390pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* Name/Signature/Ord

Ord:

Ord:

Ord: