

Due **BoC, Monday, 22Oct2018**, wATMP!
Please *fill-in* every *blank* on this sheet. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

B1: Show no work. Simply fill-in each blank on the problem-sheet.

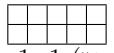
a On a K -element set, the number of reflexive symmetric binrels is $\boxed{\dots}$.
On a 4-set, there are $\boxed{\dots}$ many equiv.relations.

b On \mathbb{Z}_+ , write $x \$ y$ IFF $\text{GCD}(x, y) \geq 2$. So $\$$ is *Circle*
Transitive: T F. Symm.: T F. Reflex.: T F.

On \mathbb{Z} , say that $x \nabla y$ IFF $x - y < 1$. Then ∇ is:
Trans.: T F. Symm.: T F. Reflex.: T F.

c On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by: $(x, \alpha) \mathbf{C} (y, \beta)$ IFF $x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement “Relation **C** is an equivalence relation” is: T F

For the two essay questions, carefully TYPE, double-or-triple-spaced, grammatical solns.

B2: Consider board $\mathbf{B}_N := 2 \times N$; so  is \mathbf{B}_5 . Use T_N for the number of tilings of \mathbf{B}_N by 1×1 (“1-minos”) and 2×1 , 1×2 (“dominos”). Evidently $T_0 = 1$ and $T_1 = 2$.

I PROVE: *Each natnum N satisfies*

$$* : T_{N+2} = T_N + 2 \sum_{j=0}^{N+1} T_j.$$

In addition to your essay, show your ideas in pictures.

II Derive a Fibonacci-like CCLRR

$$T_{N+3} = \boxed{\dots}.$$

So $T_7 = \boxed{\dots}$, and $T_n = \alpha A^n + \beta B^n + \gamma C^n$, for some numbers α, β, γ , where A, B, C are roots of polynomial

$$f(x) = \boxed{\dots}.$$

For large n , then, $T_n \approx \alpha A^n$, where [decimal approximation] $A \approx \boxed{\dots}$ and $\alpha \approx \boxed{\dots}$.

B3: In our Velleman text, solve problem #12P277. Let \mathbf{E}_n be the equilateral triangle with side-length 2^n . This \mathbf{E}_n can be tiled in an obvious way by 4^n many little-triangles [copies of \mathbf{E}_0]; see picture P.277. The “*punctured* \mathbf{E}_n ”, written $\widetilde{\mathbf{E}}_n$, has its topmost copy of \mathbf{E}_0 removed.

A (*trape*)**zoid**, \mathbf{T} , comprises three copies of \mathbf{E}_0 glued together in a row, rightside-up, upside-down, rightside-up [picture P.277]. [A *zoid-tiling* allows all three rotations of \mathbf{T} .]

i PROVE: *For each n , board $\widetilde{\mathbf{E}}_n$ admits a zoid-tiling.*

ii Let Δ_k be the equilateral triangle of sidelength k ; so \mathbf{E}_n is Δ_{2^n} . Triangle Δ_k comprises k^2 little-triangles.

For what values of k does Δ_k admit a zoid-tiling?

For which k does $\widetilde{\Delta}_k$ admit a zoid-tiling?

iii An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed).

Let \mathbf{S}_n be the $2^n \times 2^n$ square board, comprising 4^n **squareis** (little squares). Have $\widetilde{\mathbf{S}}_n$ be the board with one corner square removed. Velleman inductively shows, pp.272-275, that each $\widetilde{\mathbf{S}}_n$ is Lmino-tilable (by $[4^n - 1]/3$ Lminos, of course). Further, with \mathbf{S}'_n denoting \mathbf{S}_n with an *arbitrary* puncture, V. proves that every \mathbf{S}'_n is Lmino-tilable.

Generalize this to three-dimensions. Let \mathbf{C}_n denote the $2^n \times 2^n \times 2^n$ cube, $\widetilde{\mathbf{C}}_n$ the corner-punctured cube, and let \mathbf{C}'_n be \mathbf{C}_n but with an arbitrary **cubie** removed.

What is the 3-dimensional analog of an Lmino? Calling it a “**3-mino**”, how many cubies does it have? [Provide a drawing of your 3-mino.] PROVE: *Every \mathbf{C}'_n admits a 3-mino-tiling.* [Provide also pictures showing your ideas.]

iv Generalize to K -dim(ensional) space, with $\mathbf{C}_{n,K}$ being the $2^n \times K \times 2^n$ cube, having $[2^n]^K = 2^{nK}$ many K -dim’al cubies. As before, let $\mathbf{C}'_{n,K}$ be $\mathbf{C}_{n,K}$ with an arbitrary cubie removed.

What is your **K -mino** with which you will tile, and how many cubies does it have? (So a 2-mino is our Lmino.) PROVE: *Every $\mathbf{C}'_{n,K}$ admits a K -mino-tiling.*

B1: 95pts

B2: 80pts

B3: 155pts

Total: 330pts