

Number Theory
MAS4203 8430

Home-B

Prof. JLF King
Touch: 2Jul2018

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by 3PM, Thursday, 8 March, slid
completely under my office door, Little Hall 402.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

B1: Short answer: Show no work.

a

Consider the four congruences C1: $z \equiv_{33} 6$,
C2: $z \equiv_{15} 12$, C3: $z \equiv_{35} 2$ and C4: $z \equiv_{25} 2$. Let z_j be the *smallest natnum* satisfying (C1) \wedge $\dots \wedge$ (Cj). Then

$$z_2 = \dots ; z_3 = \dots ; z_4 = \dots$$

b

Three Jacobi symbols: Two blanks are immed.:
 $\left(\frac{4203}{2006}\right) = \dots$, $\left(\frac{27113}{4913}\right) = \dots$, $\left(\frac{120}{27113}\right) = \dots$

c

Let $N := 1024 \cdot 9$. In std. form, this cyclo-poly
 $C_N(x) = \dots$

d

Poly $Q(x) := x^4 - 12x^3 - 8x^2 - 19x + 437$ factors completely mod 13 as:

$$\langle Q(x) \rangle_{13} = \dots$$

e

If $7^e \parallel [2007!]$, then $e = \dots$

f

Note $p := 137$ is prime. The (multiplicative) order of 2 mod 137 is \dots .

[Hint: $p - 1$ has very few prime factors.]

[Hint: $p - 1$ has very few prime factors. See problem B2.]

Essay questions: Type in complete sentences and also fill in the blanks. Each essay starts a new page.

B2: #9P134 of Strayer.

B3: Magic integers $G_1 = \dots$, $G_2 = \dots$,
 $G_3 = \dots$, $G_4 = \dots$, each in $[0..1260]$,
 are st. $g: \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \rightarrow \mathbb{Z}_{1260}$ is a ring-iso, where

$$g((z_1, z_2, z_3, z_4)) := \left\langle z_1 G_1 + z_2 G_2 + z_3 G_3 + z_4 G_4 \right\rangle_{1260}.$$

Now consider poly $h(x) := [x+59][x-1][x+83]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 7, 4, 9, 5$, displaying the *results* in a nice table. (Do **not** show work for this step.)

Now use your ring-iso to compute *all* solns x to $h(x) \equiv_{1260} 0$, displaying the results in a table which shows *which* 4tuple each came from. There are (not counting multiplicities) $K := \dots$ many solns.

Explain your method well; then show one computation giving a root *different* (mod 1260) from -59, 1, -83.

B4: The number $p := 1217$ is prime, and 5 is a p -nonQR. Use the **repeated squaring** method to compute a p -RoNO = $\in [0.. \frac{p}{2}]$.

Describe a probabilistic algorithm to compute a RoNO mod a 4POS prime. [Hint: Shoup is a resource.]

B5: Pick a NT “proof” problem and solve it elegantly.

End of Home-B

B1: 180pts

B2: 65pts

B3: 65pts

B4: 65pts

B5: 20pts

Total: 395pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* Name/Signature/Ord

Ord:

Ord:

Ord: