

Abstract Algebra
MAS4301 09B1

Home-B

Prof. JLF King
07Feb2008

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Due BoC, Monday, 28Oct2019, wATMP!

Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{\} \neq 0 \neq \text{Empty-word}.$

Let F and R be the *flip* and *rotation* in the dihedral group \mathbb{D}_N , with $F^2=e$, $R^N=e$ and $RF=FR=e$. Use R^j and R^jF as the standard form of each element in \mathbb{D}_N .

Fill-in *all* blanks (*handwriting; don't bother to type*) on this sheet including the blanks for the essay questions!

B1: Show no work.

a $N := \varphi(100) = \boxed{\dots}$ So $\varphi(N) = \boxed{\dots}$
EFT says that $3^{1621} \equiv_N \boxed{\dots} \in [0..N]$. Hence (by EFT) last two digits of $7^{[3^{1621}]} = \boxed{\dots}$

b With $N := 212960000 = 5^4 \cdot 2^8 \cdot 11^3$, the longest *chain* of subgroups

$\{\varepsilon\} \subsetneq \langle g_1 \rangle \subsetneq \langle g_2 \rangle \subsetneq \dots \subsetneq \langle g_K \rangle = \mathbb{Y}_N$
has $K = \boxed{\dots}$ [Hint: No OBO!] And \mathbb{Y}_N has $\boxed{\dots}$ subgroups.

c Let $V_K := G \times G \times \dots \times G$, where $G := (\mathbb{Z}_2, +)$. Define $A_K := \text{Aut}(V_K)$. Then $A_2 \cong \mathbb{D}_N$, where $N = \boxed{\dots}$ As a decreasing product of integers,

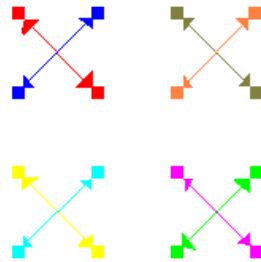
$|A_3| = \boxed{\dots}$ and $|A_4| = \boxed{\dots}$

d Perm $\pi := [6, 7, 8, 1, 2, 3, 4, 5]$ has $\text{Sgn}(\pi) = +1 -1$.

For the essay questions, carefully TYPE, double-spaced, grammatical solns.

B2: The 4×4 TTT (TicTacToe) board is $\mathbb{B} := [1..4] \times [1..4]$; sixteen *cells*. Let Γ denote the TTT -automorphism group; the set of self-bijections of \mathbb{B} which preserve all ten TTT s. So $R, F \in \Gamma$, where R rotates \mathbb{B} by 90° CCW, and F flips \mathbb{B} about its vertical axis. Evidently, $\langle R, F \rangle_\Gamma \cong \mathbb{D}_4$.

A less obvious TTT -automorphism is the *swizzle*, S : It exchanges each corner square with the central square that it (diagonally) touches; and it does The Right Thing on the edge squares.



i

Easily, $S \subseteq R$ and $S \subseteq F$, hence each element of subgroup $\Lambda := \langle S, F, R \rangle$ can be written in form $S^b R^c F^d$ for integers b, c, d . So $|\Lambda| = \boxed{\dots}$; prove this.

Draw a “16-dot picture” (4×4 dots, with arrows), for each element $\alpha \in \Lambda$. However, use the same picture for α rotated or flipped about any line, or for α^{-1} (rotated or flipped). *Label* each picture with *all* the automorphisms that it describes. The total number of labels should equal your $|\Lambda|$.

ii

Find a TTT -aut T which is **not** in the Λ subgp. Write the commutation relations between T and each of $\{S, R, F\}$. Prove that each aut α can be written as $\alpha = T^{a_1} S^{a_2} R^{a_3} F^{a_4}$, with $a_i \in \mathbb{Z}$. For element $\beta = T^{b_1} S^{b_2} R^{b_3} F^{b_4}$, give an explicit multiplication rule showing how to compute the exponents $\{c_i\}_{i=1}^4$ of $\beta\alpha = T^{c_1} S^{c_2} R^{c_3} F^{c_4}$.

Prove that $\langle T, S, R, F \rangle$ is **all** of Γ . Thus $|\Gamma| = \boxed{\dots}$

Draw all the new labeled 16-dot pictures for $\Gamma \setminus \Lambda$.

iii

Find a set of *involutions* which generates Γ . Compute (with proof) the center of Γ ; what is its order?

iv

With $u \in \mathbb{B}$ the upper-LH corner of \mathbb{B} , define its stabilizer $\Upsilon := \text{Stab}_\Gamma(u)$. With proof, compute $|\Upsilon| = \boxed{\dots}$. The number of Υ -orbits is $\boxed{\dots}$

B3: Prove that $S := (\mathbb{Q}, +, 0)$ is not isomorphic to a proper subgroup of itself.

End of Home-B

B1: 110ptsB2: 150ptsB3: 65ptsTotal: 325pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* Name/Signature/Ord

Ord: Ord: Ord: