

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by noon, Thursday, 14Feb2008, slid under my office door, LIT402. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq \text{Empty-word}.$

Let **F** and **R** be the *flip* and *rotation* in the dihedral group \mathbb{D}_N , with $\mathbf{F}^2 = \mathbf{e}$, $\mathbf{R}^N = \mathbf{e}$ and $\mathbf{RFRF} = \mathbf{e}$. Use \mathbf{R}^j and $\mathbf{R}^j\mathbf{F}$ as the standard form of each element in \mathbb{D}_N .

Use \mathbb{Y}_N or $\mathbb{Y}(N)$ to denote the cyclic group of order N .

Fill-in *all* blanks (*handwriting; don't bother to type*) on this sheet including the blanks for the essay questions!

B1: Show no work.

a With $N := 36300 = 5^4 \cdot 2^8 \cdot 11^3$, the longest *chain* of subgroups

$$\{\mathbf{e}\} \subsetneq \langle g_1 \rangle \subsetneq \langle g_2 \rangle \subsetneq \dots \subsetneq \langle g_K \rangle = \mathbb{Y}_N$$

has $K =$ [Hint: No OBO!]

And \mathbb{Y}_N has subgroups.

b Euler $\varphi(36300) =$ [.....]

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of *primes* to posint powers, with $p_1 < p_2 < \dots$

c Mod $K := 4301$, the recipr. $\langle \frac{1}{237} \rangle_K =$ [.....] $\in [0..K]$.

[Hint: $\frac{1}{237} \equiv x \pmod{4301}$ solves $4 - 237x \equiv 1 \pmod{4301}$.]

d In \mathbb{S}_4 , the subgp, H , generated by $y := (1\ 2)(3\ 4)$ and $z := (2\ 4\ 3)$ has many elements.

e $G := (\mathbf{U}(23), \cdot, 1)$ is cyclic. The smallest generator is $\in [2..21]$. And G has many generators.

f In \mathbb{S}_{11} , the maximum possible order of an element is $\text{MaxOrd}(\mathbb{S}_{11}) = \text{LCM}(\text{.....}) =$ [.....].

g Here are two elements in \mathbb{S}_{11} :

$$\alpha := (1\ 2\ 3)(4\ 5\ 6\ 7)(8\ 9\ 10\ 11); \\ \beta := (1\ 3\ 2)(4\ 5\ 7\ 6)(8\ 9\ 11\ 10).$$

Both α and β are in \mathbb{A}_{11} :

Elts α and β are conjugate in \mathbb{S}_{11} :

Elts α and β are conjugate in \mathbb{A}_{11} :

True False

True False

True False

h As a product binomial-coeffs and factorials, the number of order-15 elts in \mathbb{S}_8 is [.....].

After first shuffle, #50^P112, the cards were in order

In \mathbb{S}_4 , the centralizer of $q := (1\ 2)(3\ 4)$ has many elts. In $C(q)$, the number of elements of each cycle-signature is: $[1^4]:$ [.....]. $[1^2, 2^1]:$ [.....]. $[1^1, 3^1]:$ [.....]. $[2^2]:$ [.....]. $[4^1]:$ [.....].

Essay questions: Fill-in all blanks. For each question, carefully type a double- or triple-spaced essay solving the problem. Each essay starts a new page.

B2: Produce (with proof, natch!) a finite group G and explicit elts $x, y \in G$ with *different prime* orders $p \neq q$, so that $\text{Ord}(xy) \perp p \cdot q$. [Hint: Necessarily, $x \neq y$.]

B3: Group \mathbb{D}_5 has many automorphisms of which are inner-auts. Exhibit an *outer*-aut, defined by $\alpha(\mathbf{R}) :=$ [.....] and $\alpha(\mathbf{F}) :=$ [.....]. [Use form $\mathbf{R}^j \mathbf{F}^k$.] Prove that your defn extends to an automorphism. Prove that your α is not an inner-automorphism.

End of Home-B

B1: [.....] 155pts

B2: [.....] 35pts

B3: [.....] 75pts

Total: [.....] 265pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord:

Ord:

Ord: