

Please. General instructions/notation are on the CHECKLIST. Please type every 2nd or 3rd line. (Don't Scrunch!) Exam is due by **1PM, Friday, 23Apr2004**.

B1: For a prob.meas. μ , let $\tilde{\mu}$ be μ “flipped”; so $\tilde{\mu}(B) := \mu(-B)$. Write the char.fnc $\varphi_{\tilde{\mu}}$ ITOf (In Terms Of) φ_{μ} .

Let $\langle \mu; 7 \rangle$ and $\langle \mu; 7, 3 \rangle$ be a translation and a translation-scaling of μ :

$$\begin{aligned}\langle \mu; 7 \rangle(B) &:= \mu(B - 7); \\ \langle \mu; 7, 3 \rangle(B) &:= \mu(3B - 7).\end{aligned}$$

Describe the char.fncs $\varphi_{\langle \mu; 7 \rangle}$ and $\varphi_{\langle \mu; 7, 3 \rangle}$ ITOf φ_{μ} .

B2: Please do Billingsley:**26.1** P.353. Use A, B for a, b . The “lattice” is $L := A + B\mathbb{Z}$, a scaled translation of the integers. For each integer n , there is a mass $m_n := P(X = A + Bn)$; they sum to 1.

B3: Billingsley:**26.2** P.353.

B4: Billingsley:**26.5** P.354.

B5: Bill:**26.15** P.355. Remember the tool of partitioning a large compact interval into short subintervals, where all the separation points are continuity-points of μ .

B6: Bill:**24.6** P.326. As it was stated in class, the pointwise Ergodic Theorem applies to \mathbb{L}^1 -fncs.

B1: _____ 70pts

B2: _____ 70pts

B3: _____ 70pts

B4: _____ 70pts

B5: _____ 70pts

B6: _____ 70pts

Total: _____ 420pts

Please PRINT your name and ordinal. Ta:

Ord:

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____