

Staple!

ACT
MAA4211 7222

Home-B

Prof. JLF King
Touch: 6May2016

Hello. Essays violate the CHECKLIST at *Grade Peril!*
 Exam is due by **3:30PM, Tuesday, 7Oct2008**, slid completely under my office door, LIT402. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Fill-in all blanks (*handwriting; don't bother to type*).**B1:** Show no work.

a₂₀ Let $S := \{q \in \mathbb{Q}_+ \mid 5 \leq q^2 < 9\}$. Then:
 $\text{Cl}_{\mathbb{R}}(S) = \boxed{\dots}$. $\text{Itr}_{\mathbb{R}}(S) = \boxed{\dots}$.
 $\text{Cl}_{\mathbb{Q}}(S) = \boxed{\dots}$. $\text{Itr}_{\mathbb{Q}}(S) = \boxed{\dots}$.

b₁₄ Let $S := \{q \in \mathbb{Q}_+ \mid 5 \leq q^2 < 9\}$. Then:
 $\partial_{\mathbb{R}}(S) = \boxed{\dots}$. $\partial_{\mathbb{Q}}(S) = \boxed{\dots}$.

c₁₈ Suppose that U, V_1, V_2, \dots are \mathbb{R} -open-sets, and E, K_1, K_2, \dots are \mathbb{R} -closed-sets. those of the following sets which are guaranteed to be \mathbb{R} -closed.

$$K_1 \setminus E. \quad \partial_{\mathbb{R}}(E) \cap \text{Itr}_{\mathbb{R}}(E). \quad \partial_{\mathbb{R}}(E) \cup \text{Itr}_{\mathbb{R}}(E).$$

$$\mathbb{R} \setminus \left[\bigcup_{n=1}^{\infty} V_n \right]. \quad \bigcup_{n=1}^{\infty} \text{Cl}_{\mathbb{R}}(V_n). \quad [\text{Itr}_{\mathbb{R}}(E) \cap V_1]^c.$$

d₁₀ Give an example of a set,

$$\left\{ \boxed{\dots} \in \mathbb{R} \mid \boxed{\dots} \right\},$$

which has $5, 8, 9 \in \mathbb{R}$ as its only \mathbb{R} -cluster points.On \mathbb{R}_+ , define several relations: Say that $x \mathcal{R} y$ IFF $y - x < 17$. Define \mathcal{P} by: $x \mathcal{P} y$ IFF $x^{\log(y)} = 5$.Say that $x \mathcal{J} y$ IFF $x + y$ is irrational.Use \bullet for the “divides” relation on the positive integers: $k \bullet n$ iff there exists a posint r with $rk = n$.

d₁ Please those of the following relations that are *transitive* (on their domain of defn).

$$\neq \quad \bullet \quad \leqslant \quad \mathcal{R} \quad \mathcal{P} \quad \mathcal{J}$$

d₂ the *symmetric* relations:

$$\neq \quad \bullet \quad \leqslant \quad \mathcal{R} \quad \mathcal{P} \quad \mathcal{J}$$

d₃ the *reflexive* relations:

$$\neq \quad \bullet \quad \leqslant \quad \mathcal{R} \quad \mathcal{P} \quad \mathcal{J}$$

Team: _____

Essay questions: For each question, carefully type a triple-spaced essay solving the problem.

Each essay starts a new page.

B2: A MS (X, d) is *sequentially compact* if each $\vec{b} \subset X$ has a subsequence $\vec{a} \subset \vec{b}$ which is X -convergent. Prove that X is sequentially-cpt (seq-cpt) IFF each infinite subset $S \subset X$ has a cluster point.

B3: In MS (X, d) , use $B_{\varepsilon}(y)$ for the radius- ε ball centered at $y \in X$. The MS is *totally bounded* if for each posreal ε , there exists a *finite* set $\mathcal{F}_{\varepsilon} \subset X$ st. $[\bigcup_{z \in \mathcal{F}_{\varepsilon}} B_{\varepsilon}(z)] = X$. (I.e, these ε -balls *cover* X .)

Prove that X is totally bounded IFF each sequence $\vec{b} \subset X$ has a subsequence $\vec{c} \subset \vec{b}$ which is X -Cauchy.

End of Home-B

B1: _____ 98pts**B2:** _____ 45pts**B3:** _____ 55ptsPoorly stapled, or
missing ordinals : _____ -5ptsMissing names, or
honor sigs : _____ -5pts**Total:** _____ 198pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* _____ *Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____
