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Tools. For each “speed” s ∈ R, use Es as a name for

the map
�� ��z 7→ eisz on R. Note that

|eiθ − 1| 6 |θ| , for all real θ. This
since chord6arc.

1:

By the way, unmarked integrals

∫
shall mean

∫
R

.

2: Equi-cts Lemma. On compact metric space J we have
real-valued functions hn → g pointwise. The convergence
will be uniform, if {hn}n is a uniformly equi-continuous
family. ♦

Proof. The limit g automatically has the same ε, δ-relation
as the family; so we may replace each hn by hn − g. I.e,
WLOGenerality

The (((hn)))n converge pointwise to zero.

Given ε, take the corresponding δ from the family. Now
pick a δ-dense set, F, of points in J ; we can take F finite,
since J is compact.

Discarding the first few hn, we now have

∀n, ∀ t ∈ F : |hn(t)| 6 ε ;

this, by the convergence to zero. For an arbitrary point s ∈
J there is a point t ∈ F which is δ-close to s. Their
hn-values are thus ε-close. The upshot is that for all n:
|hn(s)| 6 2ε.

Consequently, back in our original notation we have that
‖hn − g‖sup 6 2ε, for all large n. �

3: Bnd Lemma. On prob.space (((Ω, µ))), meas.map f :Ω→R
has f() 6 7. If

∫
fdµ > 7 then f()

a.e
= 7. ♦

Proof. As {f < 7} =
⋃
j {f 6 7− 1

j }, I need but fix a

number L<7 and show that v := µ(f()6L) is zero. But∫
f 6 [1−v] · 7 + v · L = 7− v[7−L]. So v = 0. �

B1: For a prob.meas. µ, let µ̃ be “µ flipped”; so µ̃(B) := µ(−B).
Write the char.fnc Φµ̃ ITOf (In Terms Of) Φµ.

Let 〈µ; 7〉 and 〈µ; 7, 3〉 be a translation and a translation-scaling of µ:

〈µ; 7〉(B) := µ(B − 7) ;

〈µ; 7, 3〉(B) := µ(3B − 7) .

Describe the char.fncs Φ〈µ;7〉 and Φ〈µ;7,3〉 ITOf Φµ.

Soln-B1: Let Φ mean Φµ.
The problem discusses affine maps of R. Lets

broaden our view to a general measurable map
Q:R � and define the “push forward measure”
〈µ;Q〉(B) := µ

(
Q 1(B)

)
. Written with the in-

dicator fnc,
∫
1B d〈µ;Q〉 =

∫
1B ◦Q dµ. So∫

f d〈µ;Q〉 =
∫
f ◦Q dµ ,4:

for each measurable♥1 fnc f :R→C. Applied when
f := Et,

Φ〈µ;Q〉(t) =
∫
Et ◦Q dµ =

∫
eit·Q(x) dµ(x) .5:

Applying this with the flip, Q(x) := x, gives

Φµ̃(t) = Φ( t) , i.e Φµ̃ = Φ .CFlip:

Here, overbar is complex conjugation.
The translation map, Q(x) := x+ 7, produces

Φ〈µ;7〉(t) = eit·7 · Φ(t), i.e Φ〈µ;7〉 = E7 · Φ .CTr:

Affine map Q(x) := x+7
3

hands us

Φ〈µ;7,3〉(t) = eit·[7/3] · Φ(t/3) .CAff:

Soln

B2: Please do Billingley:26.1P.353. Use A,B for a,b. The “lattice” is
L := A+BZ, a scaled translation of the integers. For each integer n,
there is a mass mn := P(X = A+Bn); these masses sum to 1.

Soln-B2:
a

With Φ := ΦX, and mn the mass
at point A+ nB, we have that Φ(t) equals∑

n∈Z
mn · eit[A+Bn] |·|==

∑
n

mn · eit·Bn .

At the speed t := 2π
B

(which is non-zero) we have,
for each integer n, that eit·Bn = ei2π·n = 1. The

upshot is that
�
�

�
�Φ(2π

B
) = exp(i2πA

B
) .

b
Use S for the unit circle in C. Fixing pos-

real B, a “B-lattice” is a translate of BZ. Our
goal:

When µ a prob.meas: Φµ(B) ∈ S IFF
µ is supported on some B-lattice.

U:

♥1An f is 〈µ;Q〉-integrable iff f ◦Q is µ-integrable.
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Proof. The complex number Φµ(B) is the in-

tegral
�� ��∫

S z dν(z) on the unit circle, against the

push-forward measure
�� ��ν := µ ◦ EB 1 . Our goal

has transmogrified to showing ν a point-mass.
Translating µ on R corresponds to rotating♥2 ν.

So WLOG
∫
S z dν(z) is 1. Taking the real part,

then,
∫
S f(z) dν(z) = 1 where f(z) := Re(z).

Since f 6 1, the Bnd Lemma (??) asserts f ≡ 1
ν-a.e. Hence ν is supported on 1 ∈ S, since all
other z ∈ S have smaller real-part. �

c
We have non-zero speeds B&C with irra-

tional ratio R := C
B

, such that Φ(B),Φ(C) ∈ S.
So our µ is supported (Thank (U)ou!) on the in-
tersection of some B-lattice with some C-lattice.
Let z be a common point with positive µ-mass.
Move µ by an affine map carrying z to zero, and
moving the B-lattice to Z. So the C-lattice has
been carried to RZ. And the only multiple of ir-
rational R which is integral, is zero times R.

Soln

B3: Billingley:26.2P.353.

Soln-B3: Symmetry of µ means µ̃ = µ which,
from (??), means that Φµ = Φµ; thus Φµ is real.

The converse assumes that Φµ = Φµ which,
again (??), means that Φµ̃ = Φµ. The (non-trivial)
uniqueness thm26.2 (P.346) forces µ̃ = µ.

Soln

B4: Billingley:26.5P.354.

Soln-B4: An integrable h:R � defines a signed-
measure; use “Φh” for its characteristic fnc. Note
that Φh(1) equals

∫
R h; this may be zero or nega-

tive. We strengthen the problem to:

6: Theorem. On R, suppose that f, f ′, f ′′, . . . , f (N)

are integrable (w.r.t Lebesgue measure). Then

Φf (t) = o(1/tN) , as N →∞.

♥2Map EB is a group homomorphism. Hence it carries
group translations to group translations.

Proof. Applying (??∗) repeatedly gives

Φf (t) =
[

1/i t
]N
·Υ(t) ,??∗:

where Υ := Φf (N) is the char.fnc of the signed-

measure coming from f (N). This measure is
abs.continuous, so our “Good” thm from class
shows that Υ(t)→ 0, as t→∞. �

7: Lemma. Suppose fncs h&h′ are Lebesgue
integrable. Then h(x)→ 0 as x→ ±∞. ♦

Proof. Since h ∈ L1(Leb), automatically
liminfz→ ∞|h(z)| is zero. Fixing ε, then, there are

arbitrarily large pts z0 so that
�� ��|h(z0)| < ε . Pick

one so large that, estimating the derivative,∫ ∞
z0
|h′| 6 ε .

For an arbitrary x > z0, the FTCalculus gives

h(x) = h(z0) +
∫ x

z0
h′ .

Thus |h(x)| = ε+
∫ x
z0
|h′| 6 2ε. �

A corollary of (??) is

∀t ∈ R : eitxh(x)
∣∣∣x= ∞

x= ∞
= 0 ,??∗:

since each x 7→ eitx is bounded.

8: Prop’n. Suppose that h&h′ are (Lebesgue)

integrable. Then
�� ��for each real t6=0 :

Φh(t) = [ 1/it] · Φh′(t) .??∗:

Proof. Integrating by-parts, Φh(t) equals∫
eitxh(x) dx = V −

∫ 1

i t
· eitx · h′(x) dx ,

where V := 1
it
eitxh(x)

∣∣∣x= ∞

x= ∞
. And V is zero, cour-

tesy (??∗). �
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Soln

B5: Bill:26.15P.355. Remember the tool of partitioning a large
compact interval into short subintervals, where all the separation points
are continuity-points of µ.

Soln-B5: Rename the µn to νn.

a
Fix ε. Let δ := ε/L, where L is taken (courtesy

tightness) large enough that

∀ν : ν(Rr J) 6 ε ,9:

on interval J := [ L,L]. Algebraically, esx − etx

equals etx[e[s−t]x − 1]. For s and t real, use (??)
for

|esx − etx| 6
∣∣∣[s− t] · x∣∣∣ .

So for |s− t| 6 δ and x ∈ J , we conclude that

|esx − etx| 6 δ · |x| 6 ε .

Employ (??), then fact µ(J) 6 1, to obtain

|Φν(s)− Φν(t)| 6 2ε+
∫
J
|esx − etx| · dν(x)

6 2ε+
∫
J
ε · dν(x) = 3ε .

Thus {Φνn}n is a uniformly equi-cts family of fncs.

b
A bnded set in R is included in some compact

interval, J . Equi-cts Lemma ??, with hn := Φνn

and g := Φµ, gives uniform convergence.

c
In distribution, δ1/n → δ0. For every real t,

|Φδ0(t)− Φδ1/n(t)| = |1− eit/n| .

At t := πn, the distance is 2. This implies that
‖Φδ0 − Φδ1/n‖sup = 2, for each posint n.

Soln

B6: Bill:24.6P.326. As it was stated in class, the pointwise Ergodic
Theorem applies to L1-fncs.

Soln-B6: We generalize, removing the non-
negativity condition and asking merely that

E(f+) =∞ and E(f−) <∞ .

Given a posint K we can pick a large integer K̂
so that the “cut-off fnc”

gK() := Min
(
K̂, fK()

)
has

∫
gK dµ > K .

Off of a nullset NK we have pointwise convergence
of the Cesàro averages:

AN(gK) −→
∫
gK , as N →∞.

Now M := ∪KNK is a nullset. Each AN is order-
preserving and so, at a point ω ∈ Ω rM,

liminf
N→∞

AN

(
f
)
(ω) > liminfN AN

(
gK
)
(ω)

=
∫
gK > K .

Now take a supremum over K. �
Soln

That was fun! Let’s do this Again!
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