

Tools. For each “speed” $s \in \mathbb{R}$, use E_s as a name for the map $[z \mapsto e^{isz}]$ on \mathbb{R} . Note that

$$1: \quad |e^{i\theta} - 1| \leq |\theta|, \quad \text{for all real } \theta. \text{ This since chord} \leq \text{arc.}$$

By the way, unmarked integrals \int shall mean $\int_{\mathbb{R}}$.

2: Equi-cts Lemma. On compact metric space J we have real-valued functions $h_n \rightarrow g$ pointwise. The convergence will be uniform, if $\{h_n\}_n$ is a uniformly equi-continuous family. \diamond

Proof. The limit g automatically has the same ε, δ -relation as the family; so we may replace each h_n by $h_n - g$. I.e, WLOG generality

The $(h_n)_n$ converge pointwise to zero.

Given ε , take the corresponding δ from the family. Now pick a δ -dense set, \mathcal{F} , of points in J ; we can take \mathcal{F} finite, since J is compact.

Discarding the first few h_n , we now have

$$\forall n, \forall t \in \mathcal{F}: \quad |h_n(t)| \leq \varepsilon;$$

this, by the convergence to zero. For an arbitrary point $s \in J$ there is a point $t \in \mathcal{F}$ which is δ -close to s . Their h_n -values are thus ε -close. The upshot is that for all n : $|h_n(s)| \leq 2\varepsilon$.

Consequently, back in our original notation we have that $\|h_n - g\|_{\sup} \leq 2\varepsilon$, for all large n . \diamond

3: Bnd Lemma. On prob.space (Ω, μ) , meas.map $f: \Omega \rightarrow \mathbb{R}$ has $f() \leq 7$. If $\int f d\mu \geq 7$ then $f() \stackrel{a.e}{=} 7$. \diamond

Proof. As $\{f < 7\} = \bigcup_j \{f \leq 7 - \frac{1}{j}\}$, I need but fix a number $L < 7$ and show that $v := \mu(f() \leq L)$ is zero. But $\int f \leq [1-v] \cdot 7 + v \cdot L = 7 - v[7-L]$. So $v = 0$. \diamond

B1: For a prob.meas. μ , let $\tilde{\mu}$ be “ μ flipped”; so $\tilde{\mu}(B) := \mu(-B)$. Write the char.fnc $\Phi_{\tilde{\mu}}$ ITOf (In Terms Of) Φ_{μ} .

Let $\langle \mu; 7 \rangle$ and $\langle \mu; 7, 3 \rangle$ be a translation and a translation-scaling of μ :

$$\begin{aligned} \langle \mu; 7 \rangle(B) &:= \mu(B - 7); \\ \langle \mu; 7, 3 \rangle(B) &:= \mu(3B - 7). \end{aligned}$$

Describe the char.fncs $\Phi_{\langle \mu; 7 \rangle}$ and $\Phi_{\langle \mu; 7, 3 \rangle}$ ITOf Φ_{μ} .

Soln-B1: Let Φ mean Φ_{μ} .

The problem discusses affine maps of \mathbb{R} . Lets broaden our view to a general measurable map $Q: \mathbb{R} \rightarrow \mathbb{R}$ and define the “push forward measure” $\langle \mu; Q \rangle(B) := \mu(Q^{-1}(B))$. Written with the indicator fnc, $\int \mathbf{1}_B d\langle \mu; Q \rangle = \int \mathbf{1}_B \circ Q d\mu$. So

$$4: \quad \int f d\langle \mu; Q \rangle = \int f \circ Q d\mu,$$

for each measurable \diamond^1 fnc $f: \mathbb{R} \rightarrow \mathbb{C}$. Applied when $f := E_t$,

$$5: \quad \Phi_{\langle \mu; Q \rangle}(t) = \int E_t \circ Q d\mu = \int e^{it \cdot Q(x)} d\mu(x).$$

Applying this with the flip, $Q(x) := -x$, gives

$$C_{\text{Flip}}: \quad \Phi_{\tilde{\mu}}(t) = \Phi(-t), \quad \text{i.e. } \Phi_{\tilde{\mu}} = \overline{\Phi}.$$

Here, **overbar** is complex conjugation.

The translation map, $Q(x) := x + 7$, produces

$$C_{\text{Tr}}: \quad \Phi_{\langle \mu; 7 \rangle}(t) = e^{it \cdot 7} \cdot \Phi(t), \quad \text{i.e. } \Phi_{\langle \mu; 7 \rangle} = E_7 \cdot \Phi.$$

Affine map $Q(x) := \frac{x+7}{3}$ hands us

$$C_{\text{Aff}}: \quad \Phi_{\langle \mu; 7, 3 \rangle}(t) = e^{it \cdot [7/3]} \cdot \Phi(t/3).$$

Soln

B2: Please do Billingsley:26.1 P.353. Use A, B for a, b . The “lattice” is $L := A + B\mathbb{Z}$, a scaled translation of the integers. For each integer n , there is a mass $m_n := \mu(X = A + Bn)$; these masses sum to 1.

Soln-B2: a With $\Phi := \Phi_X$, and m_n the mass at point $A + nB$, we have that $\Phi(t)$ equals

$$\sum_{n \in \mathbb{Z}} m_n \cdot e^{it[A+Bn]} \stackrel{!}{=} \sum_n m_n \cdot e^{it \cdot Bn}.$$

At the speed $t := \frac{2\pi}{B}$ (which is non-zero) we have, for each integer n , that $e^{it \cdot Bn} = e^{i2\pi \cdot n} = 1$. The upshot is that ($\Phi(\frac{2\pi}{B}) = \exp(i2\pi \frac{A}{B})$).

b Use \mathbb{S} for the unit circle in \mathbb{C} . Fixing pos-real B , a “ B -lattice” is a translate of $B\mathbb{Z}$. Our goal:

Y: When μ a prob.meas: $\Phi_{\mu}(B) \in \mathbb{S}$ IFF μ is supported on some B -lattice.

\diamond^1 An f is $\langle \mu; Q \rangle$ -integrable iff $f \circ Q$ is μ -integrable.

Proof. The complex number $\Phi_\mu(B)$ is the integral $\boxed{\int_{\mathbb{S}} z \, d\nu(z)}$ on the unit circle, against the *push-forward* measure $\boxed{\nu := \mu \circ E_B^{-1}}$. Our goal has transmogrified to showing ν a point-mass.

Translating μ on \mathbb{R} corresponds to rotating² ν . So WLOG $\int_{\mathbb{S}} z \, d\nu(z)$ is 1. Taking the real part, then, $\int_{\mathbb{S}} f(z) \, d\nu(z) = 1$ where $f(z) := \operatorname{Re}(z)$.

Since $f \leq 1$, the Bnd Lemma (??) asserts $f \equiv 1$ ν -a.e. Hence ν is supported on $1 \in \mathbb{S}$, since all other $z \in \mathbb{S}$ have smaller real-part. \spadesuit

c We have non-zero speeds $B \& C$ with irrational ratio $R := \frac{C}{B}$, such that $\Phi(B), \Phi(C) \in \mathbb{S}$. So our μ is supported (Thank (Y)ou!) on the intersection of *some* B -lattice with *some* C -lattice. Let z be a common point with positive μ -mass. Move μ by an affine map carrying z to zero, and moving the B -lattice to \mathbb{Z} . So the C -lattice has been carried to $R\mathbb{Z}$. And the only multiple of irrational R which is integral, is zero times R .

Soln

B3: Billingsley:26.2 P.353.

Soln-B3: Symmetry of μ means $\tilde{\mu} = \mu$ which, from (??), means that $\Phi_\mu = \overline{\Phi_\mu}$; thus Φ_μ is real.

The converse assumes that $\Phi_\mu = \overline{\Phi_\mu}$ which, again (??), means that $\Phi_{\tilde{\mu}} = \Phi_\mu$. The (non-trivial) uniqueness **thm 26.2** (P.346) forces $\tilde{\mu} = \mu$.

Soln

B4: Billingsley:26.5 P.354.

Soln-B4: An integrable $h: \mathbb{R} \rightarrow \mathbb{C}$ defines a signed-measure; use “ Φ_h ” for its characteristic fnc. Note that $\Phi_h(1)$ equals $\int_{\mathbb{R}} h$; this may be zero or negative. We strengthen the problem to:

6: Theorem. On \mathbb{R} , suppose that $f, f', f'', \dots, f^{(N)}$ are integrable (w.r.t Lebesgue measure). Then

$$\Phi_f(t) = o(1/t^N), \quad \text{as } N \rightarrow \infty.$$

²Map E_B is a group homomorphism. Hence it carries group translations to group translations.

Proof. Applying (??*) repeatedly gives

$$??* : \quad \Phi_f(t) = \left[-1/it \right]^N \cdot \Upsilon(t),$$

where $\Upsilon := \Phi_{f^{(N)}}$ is the char.fnc of the signed-measure coming from $f^{(N)}$. This measure is abs.continuous, so our “Good” thm from class shows that $\Upsilon(t) \rightarrow 0$, as $t \rightarrow \infty$. \spadesuit

7: Lemma. Suppose fncs h & h' are Lebesgue integrable. Then $h(x) \rightarrow 0$ as $x \rightarrow \pm\infty$. \diamond

Proof. Since $h \in \mathbb{L}^1(\text{Leb})$, automatically $\liminf_{z \rightarrow \pm\infty} |h(z)|$ is zero. Fixing ε , then, there are arbitrarily large pts z_0 so that $|h(z_0)| < \varepsilon$. Pick one so large that, estimating the derivative,

$$\int_{z_0}^{\infty} |h'| \leq \varepsilon.$$

For an arbitrary $x > z_0$, the FTCalculus gives

$$h(x) = h(z_0) + \int_{z_0}^x h'.$$

Thus $|h(x)| = \varepsilon + \int_{z_0}^x |h'| \leq 2\varepsilon$. \spadesuit

A corollary of (??) is

$$??* : \quad \forall t \in \mathbb{R} : \quad \left. e^{itx} h(x) \right|_{x=-\infty}^{x=+\infty} = 0,$$

since each $x \mapsto e^{itx}$ is bounded.

8: Prop'n. Suppose that h & h' are (Lebesgue) integrable. Then for each real $t \neq 0$:

$$??* : \quad \Phi_h(t) = [-1/it] \cdot \Phi_{h'}(t).$$

Proof. Integrating by-parts, $\Phi_h(t)$ equals

$$\int e^{itx} h(x) \, dx = V - \int \frac{1}{it} \cdot e^{itx} \cdot h'(x) \, dx,$$

where $V := \left. \frac{1}{it} e^{itx} h(x) \right|_{x=-\infty}^{x=+\infty}$. And V is zero, courtesy (??*). \spadesuit

Soln

B5: Bill:26.15 P.355. Remember the tool of partitioning a large compact interval into short subintervals, where all the separation points are continuity-points of μ .

Soln-B5: Rename the μ_n to ν_n .

a Fix ε . Let $\delta := \varepsilon/L$, where L is taken (courtesy tightness) large enough that

$$9: \quad \forall \nu: \quad \nu(\mathbb{R} \setminus J) \leq \varepsilon,$$

on interval $J := [-L, L]$. Algebraically, $e^{sx} - e^{tx}$ equals $e^{tx}[e^{(s-t)x} - 1]$. For s and t real, use (??) for

$$|e^{sx} - e^{tx}| \leq |[s-t] \cdot x|.$$

So for $|s-t| \leq \delta$ and $x \in J$, we conclude that

$$|e^{sx} - e^{tx}| \leq \delta \cdot |x| \leq \varepsilon.$$

Employ (??), then fact $\mu(J) \leq 1$, to obtain

$$\begin{aligned} |\Phi_\nu(s) - \Phi_\nu(t)| &\leq 2\varepsilon + \int_J |e^{sx} - e^{tx}| \cdot d\nu(x) \\ &\leq 2\varepsilon + \int_J \varepsilon \cdot d\nu(x) = 3\varepsilon. \end{aligned}$$

Thus $\{\Phi_{\nu_n}\}_n$ is a uniformly equi-cts family of fncs.

b A bnded set in \mathbb{R} is included in some compact interval, J . Equi-cts Lemma ??, with $h_n := \Phi_{\nu_n}$ and $g := \Phi_\mu$, gives uniform convergence.

c In distribution, $\delta_{1/n} \rightarrow \delta_0$. For every real t ,

$$|\Phi_{\delta_0}(t) - \Phi_{\delta_{1/n}}(t)| = |1 - e^{it/n}|.$$

At $t := \pi n$, the distance is 2. This implies that $\|\Phi_{\delta_0} - \Phi_{\delta_{1/n}}\|_{\sup} = 2$, for each posint n .

Soln

B6: Bill:24.6 P.326. As it was stated in class, the pointwise Ergodic Theorem applies to \mathbb{L}^1 -fncs.

Soln-B6: We generalize, removing the non-negativity condition and asking merely that

$$E(f^+) = \infty \quad \text{and} \quad E(f^-) < \infty.$$

Given a posint K we can pick a large integer \widehat{K} so that the “cut-off fnc”

$$g_K() := \text{Min}(\widehat{K}, f_K()) \quad \text{has} \quad \int g_K d\mu \geq K.$$

Off of a nullset \mathcal{N}_K we have pointwise convergence of the Cesàro averages:

$$\mathbb{A}_N(g_K) \longrightarrow \int g_K, \text{ as } N \rightarrow \infty.$$

Now $\mathcal{M} := \cup_K \mathcal{N}_K$ is a nullset. Each \mathbb{A}_N is order-preserving and so, at a point $\omega \in \Omega \setminus \mathcal{M}$,

$$\begin{aligned} \liminf_{N \rightarrow \infty} \mathbb{A}_N(f)(\omega) &\geq \liminf_N \mathbb{A}_N(g_K)(\omega) \\ &= \int g_K \geq K. \end{aligned}$$

Now take a supremum over K . ◆

That was fun! Let's do this Again!

Soln