

Welcome! The IPB (Individual Project B) is due BoC (Beginning of Class) on **Monday, 29Nov2021**. It must be typeset.

B1: Each dot of W many, gets one of 4 colors. The minimum W guaranteeing that at least 3 dots have the same color is $W = \dots$. *Prove* your answer, and show that $W-1$ is insufficient.

With this W , the $W \times H$ -grid is $\mathbf{G} := [1..W] \times [1..H]$, for an H you will determine. A subset $\mathbf{S} \subset \mathbf{G}$ of form

$$\mathbf{S} := \{x_1, x_2, x_3\} \times \{y_1, y_2\}$$

where $x_1 < x_2 < x_3 \leq W$ and $y_1 < y_2 \leq H$ are positive integers, is a **3×2 -subgrid** of \mathbf{G} . The minimum H guaranteeing that each 4-coloring of \mathbf{G} admits a *monochromatic*

3×2 -subgrid is $H = \dots$. *Prove*

that your H is sufficient. Prove that $H-1$ is *not* sufficient.

a Now allowing C many colors, compute the corresponding values W_C and H_C . (This C was called “ N ” on the take-home.)

b Can you generalize to 3 dimensions? Further?

B2: **i** Over a 29 day month, SeLoidian Bubba posts at least one soln per day, for a total of 45 solns. PROVE:

There is a period of consecutive days over which he posted exactly $g := 13$ solutions.

[g for “Guaranteed.”] NOTE: In your proof, let \mathbf{s}_n denote the number of solns posted that month by the end of day n . By hyp., then,

$$1 \leq \mathbf{s}_1 < \mathbf{s}_2 < \dots < \mathbf{s}_{29} = 45.$$

Let $\mathbf{t}_n := 13 + \mathbf{s}_n$. Using this notation, write a complete, rigorous proof, proving any lemmas you need/want. [Hint: You may find it easier to first show that $g=12$ is guaranteed. Then you’ll see how to show that $g=13$ is guaranteed.]

ii Generalize: Replace 29 by D , replace 45 by P ; we now consider posints with $D < P$. Give a formula for the *largest* value, call it $\Gamma(D, P)$, for which your proof guarantees the values $g = 1, 2, 3, \dots, \Gamma(D, P)$.

(Stuff commed-out.)

iii

For fixed D and P , let \mathcal{M}_D^P be the *set* of guaranteed posints g . What can you tell me about the structure of \mathcal{M}_D^P ? Conjectures? Proofs? Computer experiments? (I don’t know the structure. What can you teach me?)

B3: Sequence $\vec{\mathbf{q}} = (q_0, q_1, \dots)$ is defined recursively by

$$* : q_{n+1} := \frac{[q_n]^2 + 5}{q_{n-1}},$$

with $q_0 := 2$ and $q_1 := 3$.

Prove that $\vec{\mathbf{q}}$ can be continued backwards. Prove each q_n is an integer. Compute the $\lim_{n \rightarrow \infty} q_{n+1}/q_n$.

What else can you tell me about $\vec{\mathbf{q}}$?

B1: _____ 85pts

B2: _____ 145pts

B3: _____ 85pts

Total: _____ 315pts

NAME: _____

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor.”*

Signature: _____