

Staple!

Team: B

NT-Cryptography
MAT4930 2H22

Home-B

Prof. JLF King
Tuesday, 12Mar2019

Due: BoC, Wedn., 20Mar2019, with **both** team-members present. Fill-in every blank on this sheet. This sheet is the *first-page* of your write-up.

B1: *Show no work. Write DNE if the object does not exist or the operation cannot be performed. NB: DNE $\neq \{\} \neq 0 \neq$ Empty-word.*

a Consider the four congruences C1: $z \equiv_8 1$, C2: $z \equiv_{18} 15$, C3: $z \equiv_{21} 18$ and C4: $z \equiv_{10} 3$. Let z_j be the *smallest natnum* satisfying (C1) $\wedge \dots \wedge$ (Cj). Then

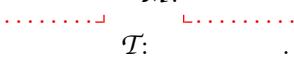
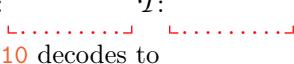
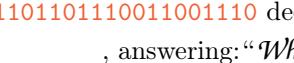
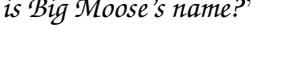
$$z_2 = \dots ; z_3 = \dots ; z_4 = \dots .$$

b With $K := 105$, ring \mathbb{Z}_K has $|\mathbb{Z}_K^*| = \dots$ and $|\text{NQR}_K| = \dots$

c

The Huffman code with letter-probabilities

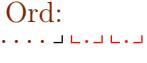
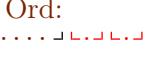
$$I: \frac{12}{66} \quad \mathcal{M}: \frac{5}{66} \quad O: \frac{7}{66} \quad \mathcal{R}: \frac{4}{66} \quad \mathcal{S}: \frac{32}{66} \quad \mathcal{T}: \frac{6}{66}$$

codes these to bitstrings: $I:$  $\mathcal{M}:$
 $O:$ $\mathcal{R}:$  $\mathcal{S}:$ $\mathcal{T}:$
 Bitstring  decodes to
 $\text{, answering: "What is Big Moose's name?"}$ 

B2: Produce an infinite prefix-code $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots\}$

such that $\lim_{K \rightarrow \infty} \frac{|\mathbf{v}_K|}{|K|_{\text{Bit}}} = 1$.

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)."*

Ord: 
 Ord: 

B3: Magic integers $G_1 = \dots$, $G_2 = \dots$,
 $G_3 = \dots$, $G_4 = \dots$, each in $[0..1260]$,
 are st. $g: \mathbb{Z}_7 \times \mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \rightarrow \mathbb{Z}_{1260}$ is a ring-iso, where

$$g((z_1, z_2, z_3, z_4)) := \left\langle z_1 G_1 + z_2 G_2 + z_3 G_3 + z_4 G_4 \right\rangle_{1260}.$$

Consider $\text{poly } h(x) := [x + 59][x - 1][x + 83]$. Find all solutions to congruences $h(x) \equiv_M 0$, for $M = 7, 4, 9, 5$, displaying the *results* in a nice table. (Do **not** show work for this step.)

Now use your ring-iso to compute *all* solns x to $h(x) \equiv_{1260} 0$, displaying the results in a table which shows *which* 4tuple each came from. There are (not counting multiplicities) $K :=$ many solns.

Explain your method well; then show one computation giving a root *different* (mod 1260) from -59, 1, -83.

B4: Alice used 32-symbol alphabet “`abc...z '?!``,” mapped to $[0..32]$). She sent this 31-character phrase

“lz’pslpjp!r.prphls?pjspvzp!?rsq”

about her feelings at the end of the semester. So, likely, the cleartext starts with a word expressing distress: “*Alas!*”, “*Woe!*”, “*Oy vey!*”, or some such, and probably ends with punctuation. (My mole in Alice’s organization suggests the word “*code*” is in her message.) The encryption affine-map is thus $\alpha \mapsto \left[\begin{bmatrix} \cdot & \cdot \\ \text{L} & \dots & \text{L} \end{bmatrix} \cdot \alpha \right] + \left[\begin{bmatrix} \cdot \\ \text{L} & \dots & \text{L} \end{bmatrix} \right]$ mod-32. Decryption is $\beta \mapsto \left[\begin{bmatrix} \cdot & \cdot \\ \text{L} & \dots & \text{L} \end{bmatrix} \cdot \beta \right] + \left[\begin{bmatrix} \cdot \\ \text{L} & \dots & \text{L} \end{bmatrix} \right]$ mod-32. The full cleartext is

.....

End of Home B

B1: 95pts

B2: 115pts

B3: 95pts

B4: 45pts

Total: 350pts