

Open brain & calculator, closed book/notes. Use $\varphi()$ for the Euler phi-fnc Essays violate the CHECKLIST at *Grade Peril!*

B5: Short answer: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

[z] The recent deterministic polynomial-time primality test, that we will cover next semester, was done by a professor and Circle:
Two gorillas **Two undergrads** **Twin primes** **Simon & Garfunkel**

[b] Compute *Magic integers* $C_1 = \underline{\quad}$, $C_2 = \underline{\quad}$, $C_3 = \underline{\quad}$, each in $(-165..165]$, so that mapping $g: \mathbb{Z}_6 \times \mathbb{Z}_5 \times \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{330}$ is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \langle z_1 C_1 + z_2 C_2 + z_3 C_3 \rangle_{330}.$$

Verify that your map satsfies: $g((1, 1, 1)) = 1$ and $g((z+6, 0, 0)) = g((z, 0, 0))$ and etc..

Essay questions: Write in complete sentences and also fill-in the blanks:

B6: Let $f(x) := x^2 - 4x - 2$ and $z_0 := c_0 := 1$. Note $f(z_0) \equiv_5 0$. Note $f'(z_0) = \underline{\quad} \not\equiv_5 0$.

Use Hensel's lemma repeatedly to compute coefficients $c_k \in [-2..2]$ (these are the blanks, below)

$$z_3 = \underbrace{c_0 \cdot 5^0 + \dots + \underbrace{c_1 \cdot 5^1}_{\underline{\quad}} + \dots + \underbrace{c_2 \cdot 5^2}_{\underline{\quad}} + \dots + \underbrace{c_3 \cdot 5^3}_{\underline{\quad}}}_{z_2}$$

so that integers $z_k := \sum_{i=0}^k c_i 5^i$ satisfy

$$f(z_k) \equiv_{5^{k+1}} 0,$$

for $k = 1, 2, 3$.

B7: For a set M , a mapping $d: M \times M \rightarrow [0, \infty)$ is a **metric** if... It is an **ultrametric** if the Triangle Inequality can be strengthened to...

A sequence $s := (m_j)_1^\infty$ in M is **d-Cauchy** if...

B8: Consider posints T, G, N with $T \perp G$. Use CRT (and not Dirichlet's thm) to prove that there exists $z \in T + G\mathbb{Z}$ with $z \perp N$. If desired, you may assume that the prime factorization of N is $N = p^b \cdot q^c$, where $p \nmid G$ and $q \nmid G$.

B-Home:	_____	390pts
B5:	_____	40pts
B6:	_____	55pts
B7:	_____	50pts
B8:	_____	60pts

Total: _____ 595pts

Please PRINT your **name** and **ordinal**. Ta:

..... Ord: _____

No RONOs were harmed in the making of this exam.

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature:

.....