

B1: Short answer. Show no work.Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\text{DNE} \neq \{\} \neq 0$.

10 10 a Using *only* symbols $P, Q, \wedge, \vee, \neg, T, F, [,]$, rewrite, in *simplest form*, expression $[[P \Rightarrow Q] \Rightarrow P]$ as \dots . Ditto, rewrite $[P \Rightarrow [Q \Rightarrow P]]$ as \dots .

15 15 b LBolt gives $G := \text{GCD}(413, 294) = \dots$. And $413S + 294T = G$, where $S = \dots$ & $T = \dots$ are integers.

15 15 c The number of permutations of "SETTEES", as a multinomial coefficient, is \dots as a numeral.

20 d As a single numeral, \dots is the following alternating sum:

$$* : 1 - 3 \cdot \binom{9}{1} + 9 \cdot \binom{9}{2} - 27 \cdot \binom{9}{3} + 81 \cdot \binom{9}{4} - \dots - 3^9 \cdot \binom{9}{9}.$$

[Hint: First determine: Is the value positive, zero, or negative.]

OYOP: *In grammatical English **Sentences**, write your essays on every 2nd line (usually), so I can easily write between the lines.*
Please number the pages like "1 of 5", "2 of 5" ... (or "1/5", "2/5" ...)

B2: An integer-valued list $\mathcal{L} := (n_1, n_2, n_3, \dots, n_9)$ is indexed by interval-of-integers $J := [1..9]$.

This J has \dots non-void subsets.And J has \dots non-void subintervals. (Note: $[4..6]$ is a length-3 subinterval, and $[8..8]$ is a length-1 subinterval.)Use PHP [Pigeon-hole Principle] to prove for each \mathcal{L} as above that: There exists a non-void set $\Omega \subset J$ of indices, st.

$$\left[\sum_{j \in \Omega} n_j \right] \bullet 9.$$

You may use \equiv for \equiv_9 i.e, congruence mod-9.

End of Class-B

B1: 100pts**B2:** 40pts**Total:** 140pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: