

Start: _____

Stop: _____

Name: _____

Sets and Logic
MHF3202

Online-B

Prof. JLF King
Fri, 06Nov2020**B1:** Short answer. Show no work. 65 points, total.**20 a** Compute the real $\alpha =$ _____ such that

$$* \quad 3^\alpha \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j.$$

[Hint: The Binomial Theorem]

25 20 b For a finite list \mathcal{S} of posints, define

$$\mu_{\mathcal{S}}(N) := \left\{ k \in [1..N] \mid \exists d \in \mathcal{S} \text{ with } d \mid k \right\}.$$

For $\mathcal{S} := \{6, 7, 10\}$, the Inclusion-Exclusion formula (using the floor fnc) for the number of elements, $|\mu_{\mathcal{S}}(N)|$, is

(Write your answer, using the floor function as appropriate, in form [term + term + term] - [term + term + term] + term.

The terms are computed from the $\{6, 7, 10\}$ numbers.)When $N := 67$, then, $|\mu_{\{6,7,10\}}(67)| =$ _____.**B2:** Short answer. Show no work. 95 points, total.**15 15 c** Number $[\mathbf{i} + \sqrt{3}]^{70} = x + \mathbf{i}y$, for realnumbers $x =$ _____ and $y =$ _____.

[Hint: Multiplying complexes multiplies their moduli, and adds their angles.]

10 10 10 5 d Blanks $\in \mathbb{R}$. So $\frac{1}{2+3\mathbf{i}} =$ _____ + $\mathbf{i} \cdot$ [_____].Thus $\text{Im}\left(\frac{5-\mathbf{i}}{2+3\mathbf{i}}\right) =$ _____.By the way, $|5 - 3\mathbf{i}| =$ _____.**15 15 e** The **Threeish-numbers** comprise $\mathcal{T} := 1 + 3\mathbb{N}$.
 \mathcal{T} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is \mathcal{T} -irreducible: $T \quad F$ Threeish $N := 85$ is not \mathcal{T} -prime because \mathcal{T} -numbers
 $J :=$ _____ and $K :=$ _____ satisfythat $N \bullet [J \cdot K]$, yet $N \not\bullet J$ and $N \not\bullet K$.**B3:** Short answer. Show no work. 70 points, total.**5 5 5 5 f** Consider binrels on $\Omega := \text{Stooges} := \{M, L, C\}$.There are _____ Anti-reflexive binrels, and
_____ Reflexive binrels,

and _____ Symmetric binrels. The

number of strict total-orders is _____.

20 g On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by:
 $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement "Relation **C** is an equivalence relation" is: $T \quad F$ **10 10 h** Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B \text{ IFF } A \cap B$ is infinite. Stmt "This \approx is an equivalence-relation" is: $T \quad F$ **10 10 i** Both \sim and \bowtie are equiv-relations on a set Ω . Define binrels **I** and **U** on Ω as follows.Define $\omega \mathbf{U} \lambda$ IFF Either $\omega \sim \lambda$ or $\omega \bowtie \lambda$ [or both].Define $\omega \mathbf{I} \lambda$ IFF Both $\omega \sim \lambda$ and $\omega \bowtie \lambda$.So "**U** is an equiv-relation" is: $T \quad F$ So "**I** is an equiv-relation" is: $T \quad F$ **B1:** _____ 65pts**B2:** _____ 95pts**B3:** _____ 70pts**Total:** _____ 230pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: _____