

Staple!

Sets and Logic
MHF3202 2787

Class-B

Prof. JLF King
Wednesday, 24Oct2018

Ord: _____

B4: Short answer. Show no work.

a Prof. King's Number Theory and Mathematical Cryptography course will be offered 7th period [1:55 PM], next semester, Spring 2019. Circle:

Yes

True

Mais oui!

b From the 195×160 game-board, cut-out (remove) the $(99, 27)$ -cell and one other cell at $P = (x, y)$. Circle those choices for P ,

 $(160, 150), (124, 5), (76, 67), (194, 159), (51, 7)$

which, if removed, would leave a board that *definitely* cannot be domino-tiled.

c On \mathbb{R}_+ , define several relations: Say that $x \mathcal{R} y$ IFF $y - x < 17$. Define \mathcal{P} by: $x \mathcal{P} y$ IFF $x^{\log(y)} = 5$.

Say that $x \mathcal{I} y$ IFF $x + y$ is irrational.

Use \bullet for the "divides" relation on the positive integers: $k \bullet n$ iff there exists a posint r with $rk = n$.

c₁ Please circle those of the following relations which are *transitive* (on their domain of defn).

\neq \bullet \leq \mathcal{R} \mathcal{P} \mathcal{I}

c₂ Circle the *symmetric* relations:

\neq \bullet \leq \mathcal{R} \mathcal{P} \mathcal{I}

c₃ Circle the *reflexive* relations:

\neq \bullet \leq \mathcal{R} \mathcal{P} \mathcal{I}

d A $k \in [1..100]$ is **good** if $k \bullet 2$ or $k \bullet 3$ or $k \bullet 5$. So $\#\text{Good} = \dots$. [Hint: Inclusion-exclusion]

e A **region** is a connected finite union of unit-squares in the plane. Regions B and C are disjoint; let $U := B \sqcup C$. Let **Til**="Lmino tilable" and **Not**="Not Lmino tilable".

 $[B \text{ Til and } C \text{ Not}] \implies [U \text{ Not}]$ $T \quad F$ $[B \text{ Not and } C \text{ Not}] \implies [U \text{ Not}]$ $T \quad F$ $[B \text{ Til and } C \text{ Til}] \implies [U \text{ Til}]$ $T \quad F$

OYOP: In grammatical English **sentences**, write your essay on every 2nd or 3rd line (usually), so that I can easily write between the lines. Please number the pages "1 of 3", "2 of 3"....

B5: An **Lmino** (pron. "ell-mino") comprises three squares in an "L" shape (all four orientations are allowed). For natnum N , let \mathbf{R}_N denote the $3 \times N$ board: I.e., is the \mathbf{R}_5 board. Prove:

Theorem: When N is odd, then board \mathbf{R}_N is not Lmino-tilable.

You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, labeled pictures.

Also, for $N=2H$ even, \mathbf{R}_N has many Lmino-tilings (with proof).

B4: _____ 121pts

B5: _____ 50pts

Total: _____ 171pts

NAME: _____

Ord: _____

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: _____