

B0: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Prof. King wears bifocals, and cannot read small handwriting. one: **True!** **Yes!** **Who??**

b LBolt gives $G := \text{Gcd}(1533, 413) = \underline{\dots\dots\dots}$. And $1533S + 413T = G$, where $S = \underline{\dots\dots\dots}$ & $T = \underline{\dots\dots\dots}$.

c⁺ Mod $K := 77$, the recipr. $\langle \frac{1}{15} \rangle_K = \underline{\dots\dots\dots} \in [0..K]$.
[Hint: $\frac{1}{15} = \frac{1}{3} - \frac{1}{5}$] So $x = \underline{\dots\dots\dots} \in [0..K)$ solves $4 - 15x \equiv_K 6$.

On \mathbb{R}_+ , define several relations: Say that $x \mathcal{R} y$ IFF $y - x < 17$. Define \mathcal{P} by: $x \mathcal{P} y$ IFF $x^{\log(y)} = 5$.

Say that $x \mathcal{I} y$ IFF $x + y$ is irrational.

Use \bullet for the “divides” relation on the positive integers: $k \bullet n$ iff there exists a posint r with $rk = n$.

c₁ Please those of the following relations which are *transitive* (on their domain of defn).

\neq \bullet \leq \mathcal{R} \mathcal{P} \mathcal{I}

B0: _____ 85pts

B1: _____ 45pts

B2: _____ 45pts

B3: _____ 45pts

B4: _____ 55pts

Total: _____ 275pts

c₂ the *symmetric* relations:

\neq \bullet \leq \mathcal{R} \mathcal{P} \mathcal{I}

Print name: _____ Ord: _____

c₃ the *reflexive* relations:

\neq \bullet \leq \mathcal{R} \mathcal{P} \mathcal{I}

d⁺ A pair (B, E) of *distinct* positive *irrationals* with B^E rational, is either $(\underline{\dots\dots\dots}, \underline{\dots\dots\dots})$ or $(\underline{\dots\dots\dots}, \underline{\dots\dots\dots})$.

Essay questions: For each question, carefully write a double- or triple-spaced, grammatical, essay solving the problem.

B1: Write, in fluid conventional English, the contrapositive of: “If at least one of my hairs is gray, then no octogenarian is excused from class.”

Write the converse of: “If you don’t cease lacking enthusiasm, then I won’t stop avoiding double-negatives.”

Write the negation of: “All mimsy were the borogoves.”

B2: Using set-builder notation, define the set of primes.

$\text{PRIMES} = \{n \in \text{WHAT} \mid \text{Conditions on } n\}$, using some of the symbols

such that, if, then, and, or, not, 0 1 2 ...

$\forall \exists \nexists \in \mathbb{N} \mathbb{Z}_+ [a .. b) \bullet + =$

and avoiding “factor(s), divides, is-a-multiple, splits, irreducible, composite, Gcd, Lcm ...” and similar, uh, cheats. Every quantification must specify its set!

B3: **i** Carefully state the FTArithmetic. **ii** Use the FTArithmetic to carefully prove that $\sqrt{6}$ is irrational.

B4: Let $L(k) := [5^{2k}] - 1$. By induction on k , prove that $\forall k \in \mathbb{N}: L(k) \bullet 3$.

B0: _____ 85pts

B1: _____ 45pts

B2: _____ 45pts

B3: _____ 45pts

B4: _____ 55pts

Print name: _____ Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____