

Note. This is an open brain, open (pristine) Sigmon-Notes exam. Please write each solution on a separate sheet of paper. Write expressions unambiguously e.g. “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with **negative** signs!)

Every “if” must be matched by a “then.”

B1: Using that \mathbb{N} is WellOrdered, prove that there is no negative natnum. (<Thm2.3)

B2: YMAssume that \mathbb{N} is sealed under addition. Please prove that \mathbb{N} is sealed under multiplication. (<Thm2.7)

B3: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$$\dagger: \quad b_{n+2} := 7b_{n+1} - 10b_n, \quad \text{for } n = 0, 1, \dots$$

Use induction to prove, for all $k \in [0.. \infty)$, that

$$\ddagger: \quad b_k = 5^k - 2^k.$$

Further. Given recurrence (\dagger) and initial conditions, *explain* how you could have discovered/computed the numbers 5 and 2 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger)-like formula when the recurrence is $b_{n+2} := \mathbf{S}b_{n+1} - \mathbf{P}b_n$, for arbitrary real-number coefficients \mathbf{S} and \mathbf{P} ?

B4: Consider these sets:

$$\begin{aligned} B &:= \left\{ -5 + \frac{n}{n+1} \mid n \in \mathbb{N} \right\}; \\ C &:= \left\{ 7 - \frac{1}{n} \mid n \in \mathbb{Z}_+ \right\}; \\ D &:= \left\{ n \cdot \sqrt{2} \mid n \in \mathbb{N} \right\}; \\ \mathbb{Q}_{\geq 0} &:= \left\{ \frac{p}{q} \mid p, q \in \mathbb{N} \text{ with } q \neq 0 \right\}. \end{aligned}$$

For each set below, one of “WO” “Nope”. In the case of **Nope**, provide an explicit infinite decreasing sequence in the given set.

B is	WO	Nope
$C \cup D$ is	WO	Nope
$\mathbb{Q}_{\geq 0}$ is	WO	Nope
$\mathbb{Z} \setminus (-\infty..-17)$ is	WO	Nope

B1: _____ 100pts

B2: _____ 100pts

B3: _____ 100pts

B4: _____ 60pts

Total: _____ 360pts

Print name _____ Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:

Filename: Classwork/NapoSelo/NaPo2002t/b-cl.NaPo2002t.
 latex As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:17.