

Note. This is an open brain, open (pristine) SigmonNotes exam. Please write each solution on a separate sheet of paper. Write expressions unambiguously e.g, “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

B1: For free YMAssume that \mathbb{N} is sealed under addition. Please prove that \mathbb{N} is sealed under multiplication.

B2: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$$\dagger: \quad b_{n+2} := 7b_{n+1} - 10b_n, \quad \text{for } n = 0, 1, \dots$$

Use induction to prove, for all $k \in [0.. \infty)$, that

$$\ddagger: \quad b_k = 5^k - 2^k.$$

Further. Given recurrence (\dagger) and initial conditions, *explain* how you could have discovered/computed the numbers 5 and 2 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger) -like formula when the recurrence is $b_{n+2} := \mathbf{S}b_{n+1} - \mathbf{P}b_n$, for arbitrary real-number coefficients \mathbf{S} and \mathbf{P} ? (This is Exer 2.15.2 in text.)

B3: Prove Thm3.3 (P.15), the Division Alg. Thm.

B4: Suppose $J \subset \mathbb{Z}$ is an ideal. Prove that there exists a natnum b so that each member of J is a multiple of b . (I am asking you to prove a little less than Thm3.6d (P.16). You'll want to use the Div.Alg.Thm.)

End of Exam-B

B1: _____ 60pts

B2: _____ 60pts

B3: _____ 60pts

B4: _____ 60pts

Total: _____ 240pts

Print name _____ Ord: _____

HONOR CODE: “*I have neither requested nor received help on this exam other than from my professor.*”

Signature: _____