

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than .9797….

B1: Show no work.

Z Prof. King wears bifocals, and cannot read small handwriting. one: **True!** **Yes!**
Who?

a Consider these two matrices:

$$C := \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \quad \text{and} \quad B := \frac{1}{2} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{bmatrix}.$$

Determine the matrix $[CB]^{2007} =$.

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent.]

b Suppose T is a linear map from \mathbb{R}^3 to \mathbb{R}^2 . Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be the standard basis for \mathbb{R}^2 . Suppose that $T(\mathbf{e}_1) = 17\mathbf{v}_1 - 2\mathbf{v}_2$ and $T(\mathbf{e}_2) = 6\mathbf{v}_2$ and $T(\mathbf{e}_3) = -4\mathbf{v}_1 - 3\mathbf{v}_2$.

Then the matrix of T is: .

c Over \mathbb{Q} , the inverse of $E := \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix}$ is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

d Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ 3 \\ Y \end{bmatrix}$, So $\mathbf{v}_3 \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when $W =$ & $Y =$.
And $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha =$ and $\beta =$.

e The 3×3 elem-matrix whose lefthand action adds 8 times row-2 to row-1 is $\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$.

f An example of 2×2 -matrices with $A^2 \neq B^2$, yet with $A^3 = B^3$, is $A =$ and $B =$.

g Each entry in 5×5 matrix M_x is a quadratic polynomial in x . So $\text{Det}(M_x)$ is a polynomial, and its maximum possible degree is .

Henceforth, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “Neither always true nor always false”. Below, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ repr. *distinct, non-zero* vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please the correct response:

y1 If $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

y2 If $\mathbf{w} \notin \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

y3 Collection $\{\mathbf{0}, \mathbf{w}\}$ is linearly-indep. **AT AF Nei**

y4 $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}\}$ is all of \mathbb{R}^4 . **AT AF Nei**

y5 If none of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is a multiple of the other vectors, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

y6 For 2×2 matrices: $\text{Det}(B + A) = \text{Det}(B) + \text{Det}(A)$. **AT AF Nei**

y7 For 2×2 : $\text{Det}([BA]^{2008}) = \text{Det}(B^{2008}) \cdot \text{Det}(A^{2008})$. **AT AF Nei**

Essay question: On your own sheets of paper, write a soln using complete sentences, explaining a bit about HOW this problem is solved.

B2: A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\begin{array}{ccccc|c} 1 & 1 & 0 & 0 & 1 & 12 \\ 0 & 0 & 1 & 0 & -8 & 34 \\ 0 & 0 & 0 & 1 & 5 & -56 \end{array} \quad \text{which is almost in RREF. Please } \text{circle} \text{ each pivot.}$$

OYOP, describe the general solution in this form,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) =$.

B3: State the Cramer's Rule Thm.

Apply C.R. to give a formula for $x_2 =$.
ITO of A, B, C, D, t_1, t_2 , where $\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$.

End of Class-B

B1: _____ 200pts

B2: _____ 45pts

B3: _____ 45pts

Total: _____ 290pts

Print
name

Ord:

.....

HONOR CODE: *"I have neither requested nor received
help on this exam other than from my professor."*

Signature:

.....