

Hello. Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$.

B1: Show no work.

Z Prof. King wears bifocals, and cannot read small handwriting. **Circle** one: **True!** **Yes!** **Who?**

a The matrix-product $\begin{bmatrix} 2 & -1 & 4 \\ -2 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} & 0 & \sqrt{2} \\ 0 & -1 & 5 \end{bmatrix}$ equals

.....

b Consider these two matrices:

$$R := \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \quad \text{and} \quad A := \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

Product matrix $\begin{bmatrix} & & | & \\ & & | & \\ & & | & \end{bmatrix}$.
[RA]⁴⁰ equals

[Hint: You don't need multiply matrices. Geometrically, what motion do these matrices represent.]

c Suppose T is a linear map from \mathbb{R}^3 to \mathbb{R}^2 . Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be the standard basis for \mathbb{R}^2 . Suppose that $T(\mathbf{e}_1) = 17\mathbf{v}_1 - 2\mathbf{v}_2$ and $T(\mathbf{e}_2) = 6\mathbf{v}_2$ and $T(\mathbf{e}_3) = -4\mathbf{v}_1 - 3\mathbf{v}_2$.

Then the matrix of T is:

.....

d Over \mathbb{Q} , the inverse of $E := \begin{bmatrix} 1 & x & z \\ & 1 & y \\ & & 1 \end{bmatrix}$ is

$$\begin{bmatrix} & & | & \\ & & | & \\ & & | & \end{bmatrix}.$$

e Let $K := \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$. The minimum-deg **monic** polynomial $h()$ st. $h(K) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is $h(x) =$

f Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ 3 \\ Y \end{bmatrix}$, So $\mathbf{v}_3 \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when $W =$ & $Y =$
And $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha =$ and $\beta =$

g The 3×3 elem-matrix whose lefthand action adds 8 times row-2 to row-1 is $\begin{bmatrix} & & | & \\ & & | & \\ & & | & \end{bmatrix}$.

h An example of 2×2 -matrices with $A^2 \neq B^2$, yet with $A^3 = B^3$, is $A =$ and $B =$

Essay question: On your own sheets of paper, write a soln using complete sentences, explaining a bit about HOW this problem is solved.

B2: A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & | & 12 \\ 0 & 0 & 1 & 0 & -8 & | & 34 \\ 0 & 0 & 0 & 1 & 5 & | & -56 \end{bmatrix} \text{ which is almost in RREF. Please } \text{circle} \text{ each pivot.}$$

OYOP, describe the general solution in this form,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) =$

End of Class-B

B1: _____ 180pts

B2: _____ 45pts

Total: _____ 225pts

Print name _____ Ord: _____

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____