

B1: A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\left[\begin{array}{ccccc|c} 5 & 4 & 0 & 0 & 10 & -15 \\ 0 & 0 & 3 & 0 & -8 & -3 \\ 0 & 0 & 0 & 2 & 1 & 0 \end{array} \right] \text{ which is } \text{almost in RREF. Please circle each pivot.}$$

OYOP, describe the general solution in this form,

$$\left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \right] = \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \alpha \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \beta \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \gamma \left[\begin{array}{c} ? \\ ? \\ ? \\ ? \\ ? \end{array} \right] + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it.
Dim(SolnFlat) =

B2: Show no work.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a $M := \begin{bmatrix} 2 & 3 \\ 11 & 4 \end{bmatrix}$. Compute M^{-1} over these three fields.

Over \mathbb{Z}_5 : $M^{-1} = \dots$.

Over \mathbb{Z}_7 : $M^{-1} = \dots$. Over \mathbb{Q} : $M^{-1} = \dots$.

b Over \mathbb{Q} , the inverse of $E := \begin{bmatrix} 1 & x & z \\ 0 & 2 & y \\ 0 & 0 & 3 \end{bmatrix}$ is

$$\left[\begin{array}{c|c|c} & & \\ \hline & & \\ \hline & & \end{array} \right]$$

c Glued to a massless plate is a 15 lb weight at the origin, a 5 lb weight at the point $(3, -1)$, and 10 lb at point (\dots, \dots) , thus putting the center-of-mass of the weighted-plate at $(1, 2)$.

d Let $M := \begin{bmatrix} 1 & 5 & -1 & -20 & -32 \\ 0 & 2 & 5 & -1 & 33 \\ 0 & 1 & 3 & 0 & 21 \end{bmatrix}$. Working over field \mathbb{Z}_7 , matrix $RREF(M)$ equals (write entries in $[-3..3]$)

$$\left[\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \end{array} \right]$$

e Since $M := 211$ is prime, ring \mathbb{Z}_{211} is a field. So the mod- M reciprocal of 199 is $R := \dots \in [0..M]$.
[IOWords, $199 \cdot R \equiv_{211} 1$ and $R \in [0..M]$.]

B3: *Henceforth*, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “NEither always true nor always false”. Vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{Q}^4$ [a \mathbb{Q} -VS], and none is $\mathbf{0}$. Here, use $\{\}$ for a multi-set.

z1 If none of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is a multiple of the other vectors, then $S := \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. AT AF Nei

z2 If $S := \{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is lin-indep, then so is $\{2\mathbf{u}, 3\mathbf{v}, 4\mathbf{w}\}$. AT AF Nei

AT AF Nei

z3 $\text{Spn}\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}\}$ is all of \mathbb{Q}^4 . AT AF Nei

AT AF Nei

z4 If $\mathbf{w} \notin \text{Spn}\{\mathbf{u}, \mathbf{v}\}$ and $\mathbf{u} \notin \text{Spn}\{\mathbf{v}, \mathbf{w}\}$, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. AT AF Nei

AT AF Nei

z5 Collection $\{\mathbf{0}, \mathbf{w}\}$ is linearly-dependent. AT AF Nei

AT AF Nei

y7 For 2×2 matrices: $\text{Det}(B + A) = \text{Det}(B) + \text{Det}(A)$. AT AF Nei

AT AF Nei

y8 For 2×2 : $\text{Det}([BA]^{2008}) = \text{Det}(B^{2008}) \cdot \text{Det}(A^{2008})$. AT AF Nei

AT AF Nei

End of Class-B

B1: _____ 55pts

B2: _____ 150pts

B3: _____ 50pts

Total: _____ 255pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor.”*

Signature: _____