

B6: Short answer: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

[z] M^* means: **Circle**: Adjoint of M Keanu Reeves

[a] Multinomial coeff $\binom{8}{3,3,4,2} =$.
In $[x+y]^{12}$, the coeff of x^3y^9 is .

[b⁺] Let $B := \begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$. [Hint: Write B as a diag-matrix plus a nilpotent matrix.]

Then $B^{12} =$.

[c⁺] $G := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Produce a diagonal-matrix

$D =$ and non-sing $Q =$,
possibly *complex*, so that $QDQ^{-1} = G$.

[d] $C := \begin{bmatrix} 2 & 0 & -5 \\ -1 & -1 & 2 \\ 3 & 0 & 1 \end{bmatrix}$. Matrix $P_C(-1) =$.
Char-poly $\varphi_C(x) =$.

[e] In each blank below, write either “there exist” or “for all” and **Circle** one of each underlined scalar-pairs. The phrase $\text{Spn}(\mathbf{v}, \mathbf{w}) \supset \text{Spn}(\mathbf{x}, \mathbf{y})$ means:
“ scalars $a, b \mid c, d$ (st. | we have | and)
 scalars $a, b \mid c, d$ (st. | we have that)
 $a\mathbf{v} + b\mathbf{w} = c\mathbf{x} + d\mathbf{y}$.”

[f] Give $2 \times 2 M =$, col-vec $\mathbf{v} =$,
st. \mathbf{v} is not an M -evec, but is an M^2 -evec with M^2 -eval= . **Everything is over \mathbb{Q} .**

Below, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “Neither always true nor always false”. Below, M is a square matrix over \mathbb{Q} .

[g] If $\varphi_M()$ splits over \mathbb{Q} , then M is \mathbb{Q} -diagonalizable.
AT **AF** **Nei**

B7: State and prove Cramer's Thm. Let $E := \begin{bmatrix} x & y & -1 \\ 7 & 1 & z \\ 1 & 1 & 3 \end{bmatrix}$.
Let $h(x, y, z)$ be the $(3, 1)$ -entry of E^{-1} . Then
 $h(x, y, z) =$, a ratfnc.

B8: Matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where A and D are 5×5 and 7×7 , resp. Suppose C is the 7×5 zero-matrix. Prove that $\text{Det}(M) = \text{Det}(A) \cdot \text{Det}(D)$. [Hint: A good picture helps.]

B9: *OASSOP, write out the following sentences, and complete them to give the correct definitions. Be specific with phrases “every”, “some”, “there exists”, etc.. Define “trivial soln” before using it. Let $V := \mathbb{C}^{5 \times 5}$. All matrices below are 5×5 complex matrices UOS . (Unless Otherwise Stated.)*

*Collection $\mathcal{C} := \{W_1, W_2, \dots, W_K\}$ of V -subspaces is **linearly independent** IFF ...*

*Matrix B is **doubly stochastic** if ...*

*Fix $\beta \in \mathbb{C}$. The **M-algebraic-multiplicity** of β is The **M-geometric-multiplicity** of β is*

*Degree-5 monic poly $g(x)$ **splits** over \mathbf{F} IFF ...*

B-Home:	<input type="text"/> <input type="text"/> <input type="text"/>	540pts
B6:	<input type="text"/> <input type="text"/> <input type="text"/>	130pts
B7:	<input type="text"/> <input type="text"/>	60pts
B8:	<input type="text"/> <input type="text"/>	60pts
B9:	<input type="text"/> <input type="text"/>	55pts

Total: 845pts

Please PRINT your **name** and **ordinal**. Ta:

Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:

Filename: Classwork/LinearAlg/LinA2005t/b-cl.LinA2005.
latex
As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:17.