

Staple!

Geometry
MTG3214 03H9

Class-B

Prof. JLF King
3Sep2015

End of Class-B

B1: Short answer. Show no work.

Please write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

a With $A := (0, 1)$, $B := (2, 3)$, $C := (7, 1)$, let T denote $\triangle ABC$. Then $\text{OrthoCenter}(T) = (\underline{\hspace{2cm}}, \underline{\hspace{2cm}})$.

a' The above T is the medial triangle of $\triangle PQR$, where $P = (\underline{\hspace{2cm}}, \underline{\hspace{2cm}})$ has the most-positive x -coordinate.

b Triangle $\triangle EFG$ has $\text{Len}(\overline{EF}) = 7$, $\angle FGE = 35^\circ$ and $\text{Len}(\overline{GF}) = 17$. This data is consistent with circle

0 1 2 ∞

many triangles.

OYOP: In grammatical English sentences, write your essays on every third line (usually), so that I can easily write between the lines. Do not restate the question.

In your essays, you may use the following proposition for free.

1: AAA-Prop. For $j = 1, 2$, consider triangles $\mathbf{S}_j := \triangle E_j F_j G_j$. If corresponding angles are equal [$\angle E_1 F_1 G_1 = \angle E_2 F_2 G_2$, etc.] then \mathbf{S}_1 is similar to \mathbf{S}_2 . \diamond

B2: Consider a circle Ω and a point U outside of Ω . A ray from U intersects Ω first at a point B and then at C . Another ray from U intersects Ω at Q , then R . [See diagram on blackboard. Points B, C, Q, R are distinct.] Prove that $\triangle UBR$ is similar to $\triangle UQC$.

B3: Carefully state the Euler-line theorem for a triangle $\mathbf{S} := \triangle PQR$.

Write a careful proof the Euler-line thm, stating and proving any lemmas you need.

B1: _____ 65pts**B2:** _____ 55pts**B3:** _____ 75pts**Total:** _____ 195pts