

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. **Write expressions unambiguously** e.g, “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$.

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

Write *rational numbers* as fractions: E.g $\frac{1}{2}$ and $1/3$, but not 0.5 nor 0.3333...; **use fractions**.

B1: Show no work.

a Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. Circle one:

True! Yes! wH'at S a?sEnTENcE

b A tank initially holds 80gal of $2\frac{\text{lb}}{\text{gal}}$ brine. Pipe-1 feeds the tank, at rate $3\frac{\text{gal}}{\text{min}}$, with brine of time-varying salinity $t^3\frac{\text{lb}}{\text{gal}}$. Pipe-2 feeds the tank at $2\frac{\text{gal}}{\text{min}}$, brine of salinity $e^t\frac{\text{lb}}{\text{gal}}$. The tank discharges brine at rate $9\frac{\text{gal}}{\text{min}}$. Until the tank empties, the tank holds $W(t) = \left[\dots \right] \text{gal}$; it empties in min.

Finally, $y(t)$, the number of pounds of salt in the tank at time t , satisfies FOLDE $\frac{dy}{dt} + F(t) \cdot y = H(t)$, where $F(t) =$

and $H(t) =$

c DE $[\mathcal{N}(x,y) \cdot \frac{dy}{dx}] + \mathcal{M}(x,y) = 0$ is *exact*, where

$$\mathcal{N}(x,y) := [7 + e^x] \quad \text{and} \quad \mathcal{M}(x,y) := e^x [y - 2x].$$

Its soln $y = y(x)$ satisfies $\mathbf{F}(x, y(x)) = \text{Const}$, where

$$\mathbf{F}(x, y) = \dots$$

d DE $[(x^2 - xy) \cdot \frac{dy}{dx}] + xy - 1 = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc

$$W(x) = \dots$$

gives a *new* DE which is exact. **Did you Check?**

e A soln to $[f'' - 3f'](x) = -[6x+1]$ is **polynomial**
 $f(x) = \underline{\dots}$. Using parameters α and β ,
 then, the *general* solution to $[h'' - 3h'](x) = -[6x+1]$
 is

$$h_{\alpha,\beta}(x) = \underline{\dots}$$

And the h with $h(0) = 2$ and $h'(0) = 7$
 is $h(x) = \underline{\dots}$

f Matrix-product $\begin{bmatrix} 4 & 7 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} = \underline{\dots}$

With $A := \begin{bmatrix} 4 & 7 \\ 2 & 4 \end{bmatrix}$, then the $(2, 1)$ -entry of A^{-1}
 is .

End of B-Class

B1: 185pts

Total: 185pts

Please *PRINT* your *name* and *ordinal*. Ta:

Ord:

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: