

Staple!

Ord: _____

Differential Eqns B-Class Prof. JLF King
MAP2302 Touch: 17Oct2017

Bonjour. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Write expressions unambiguously e.g., “ $1/a + b'$ should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$.

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

B1: Show no work.

a Fnc $y_\alpha(x) :=$ _____
is the gen. soln to $\frac{dy}{dx} = \left[\frac{1}{3}y^4 \cdot 5e^{5x} \right]$.

[Hint: SoV.] The fnc satisfying init.-cond. $y_\alpha(0) = 8$ has $\alpha =$
_____.

b Function $h()$ satisfies $h'' - 4h' - 5h = 0$, and initial conditions $\boxed{h(0) = 2}$ and $\boxed{h'(0) = 3}$. So
$$h(t) = \alpha e^{At} + \beta e^{Bt}, \text{ for numbers}$$

$\alpha =$ _____, $A =$ _____, $\beta =$ _____, $B =$ _____.

c For $x > 0$, let $B(x) := [x^3 + 7x]^x$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals
_____.

d DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is *exact*, where

$\mathcal{N}(x, y) := [x^2 - 7]$ and $\mathcal{M}(x, y) := 2xy + 3e^{3x}$.

Its soln $y = y(x)$ satisfies $\mathbf{F}(x, y(x)) = \text{Const}$, where
 $\mathbf{F}(x, y) =$ _____.

e DE $[xe^y \cdot \frac{dy}{dx}] + [8x^4 + 4e^y] = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc

$W(x) =$ _____ gives a *new* DE which is exact. Did you *Check*?

f Blanks $\in \mathbb{R}$. So $\frac{1}{5+3i} =$ _____ + $i \cdot$ [_____].
Thus $\frac{3-2i}{5+3i} =$ _____ + $i \cdot$ [_____].

By the way, $| -3 + 7i | =$ _____.

OYOP: In grammatical English *sentences*, write your essay on every *third* line (usually), so that I can easily write between the lines.

B2: Showing all the steps in the FOLDE algorithm, compute the general solution $y = y(x)$ to

*: $\frac{dy}{dx} - \frac{y}{x} = 3x^3 + x \cdot \sin(2x)$. [Only consider $x > 0$.]

Also write it here, as

$y_\alpha(x) =$ _____.

End of B-Class

B1: _____ 120pts

B2: _____ 65pts

Total: _____ 185pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____