

Abstract Algebra
MAS4301 09B1 **Class-B** Prof. JLF King
Wednesday, 30Oct2019

Hi. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{ \} \neq 0 \neq$ *Empty-word*.

B4: Show no work.

 Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is Monday, March 23, 2020.

Circle: Yes True **Résumé material!**

Let $V_K := G \times \dots \times G$, where $G := (\mathbb{Z}_2, +)$. As A
Decreasing Product of

 TTT -auts T, S, R, F [Traffic-light, Swizzle, Rotation, Flip] generate the group Γ of 4×4 -auts. Let Ω be the set of 10 TTT s on which Γ acts, with V the leftmost *Vertical TTT*, and D the upper-left to lower-right *Diagonal TTT*. The Orb-Stab thm implies

$$|\text{Stab}_\Gamma(V)| = \dots \text{ and } |\text{Stab}_\Gamma(D)| = \dots$$

In std form, $\text{Stab}_\Gamma(V) = \left\{ \begin{smallmatrix} & \\ & \dots \\ & \end{smallmatrix} \right\}$

 Shuffling $2N$ -card deck: Put the **upper N** in your **right hand**, and the **lower N** in **left hand**. Drop a **RH** card, then a **LH**, then **RH**, etc. [New bottom-card came from **RH**; new top-card from **LH**.] So $S_N := \text{Sign}(\pi_N) =$

And S_{2019} is **+1** **-1**.

OYOP: *In grammatical English sentences, write your essay on every 2nd line (usually), so that I can easily write between the lines.*

B5: Suppose τ is the unique element of order 2 in a [possibly infinite] group G . Prove that $\tau \in Z(G)$, the center of G .

B-Home: _____ 325pts

B4: _____ 120pts

B5: _____ 45pts

Total: _____ 490pts