

Hello. Write **DNE** if the object does not exist or the operation cannot be performed. **NB:** $\text{DNE} \neq \{\} \neq 0 \neq \text{Empty-word.}$

Let F and R be the *flip* and *rotation* in the dihedral group \mathbb{D}_N , with $F^2 = e$, $R^N = e$ and $RF = F$. Use R^j and R^jF as the standard form of each element in \mathbb{D}_N .

Use \mathbb{Y}_N or $\mathbb{Y}(N)$ to denote the cyclic group of order N .

Fill-in *all* blanks on this sheet **including** the blanks for the essay questions!

B4: Show no work.

a Euler $\varphi(1,000,000) =$ _____.

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \cdots$ of *primes* to posint powers, with $p_1 < p_2 < \dots$

b Mod $K := 3175$, the recipr. $\langle \frac{1}{73} \rangle_K =$ _____ $\in [0..K]$.

[Hint: $\frac{1}{73} = 0.\overline{138973}$] So $x =$ _____ $\in [0..K]$ solves $4 - 73x \equiv_K 1$.

c In \mathbb{S}_{15} , in terms of multinomial-coeffs and factorials: There are many solo 15-cycles. And the

$\#\{$ Elements of _____
order 35 $\} =$ _____.

d In \mathbb{S}_{19} there are _____ many signatures whose elts have order 15. They are: _____.

e Cards 0, 1, ..., 7 are fed into a shuffling machine, then the output is fed back in, resulting in 5, 4, 0, 2, 6, 7, 1, 3. So after the first pass, the cards were in order _____.

f Each $h \in \mathbb{D}_{10}$ yields an inner-auto $J_h(x) := h x h^{-1}$. Writing elts in form $R^k F^s$, two *distinct* $\alpha, \beta \in \mathbb{D}_{10}$ with

$J_\alpha = J_\beta$ are $\alpha =$ _____ and $\beta =$ _____.

g $\#\text{Inn}(\mathbb{D}_{10}) =$ _____ and $\#\text{Aut}(\mathbb{D}_{10}) =$ _____.

Essay questions: Fill-in all blanks. For each question, carefully type a double- or triple-spaced essay solving the problem. Each essay starts a new page.

B5: Given an example of two perms $\alpha, \beta \in \mathbb{S}_7$, with $\text{Ord}(\alpha) = 2 = \text{Ord}(\beta)$, yet $\text{Ord}(\alpha\beta) = \infty$. What is the cycle-signature of your $\alpha\beta$?

B6: Use a full page to draw the lattice of subgroups of \mathbb{S}_3 . Describe the subgps by defining specific elts in cycle notation, then showing the subgps in form, e.g. $\langle z, y \rangle$.

End of Class-B

B-Home: _____ 265pts

B4: _____ 95pts

B5: _____ 15pts

B6: _____ 20pts

Total: _____ 395pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*
Name/Signature/Ord _____