

Staple!

Ord: _____

Algebra 1 In-class-B Prof. JLF King
 MAS4301 3175 Tuesday 08Apr2003

Note. Open brain, closed book/notes. Use $\varphi()$ for the Euler phi-fnc. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g, “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!) Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\ldots$. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

B7: Two-second-teasers: Show no work.
 (Pts: 20×2 , 30×3 .)

[z] Since Prof. King has cycle-lengths 2, 2, 3, he is obviously **Circle**: Even-handed. Just-plain-**Odd**.

[a] $\text{Aut}(\mathbb{D}_{15})$ has many elements?
 $\text{Inn}(\mathbb{D}_{15})$ has many elements?

[b] The cyclic group $\mathbf{U}(125)$ has many elements and many generators? (Express each ans. as a product.)

[b] Integers $A =$ and $B =$ are such that

$$(y, z) \mapsto [Ay + Bz] \pmod{104}$$

is a ring-iso from $\mathbb{Z}_8 \times \mathbb{Z}_{13} \rightarrow \mathbb{Z}_{104}$. Give an explicit integer $n =$ st. $n \equiv_8 3$ and $n \equiv_{13} 1$.

[c] Consider poly $f(x) := [x - 4][x - 13]$. How many *distinct* roots does f have mod 9?
 Mod 2¹⁰⁰? Mod 170?

[d] If the peg-jump pattern on the BB can jump down to a single peg, then the Klein-4 argument shows that the only possible last-peg positions are and (E.g H12 or J92.)

Essay questions. Please write (on your own paper) in complete grammatical sentences.

B8: For an arb. gp G , prove: $\text{Inn}(G) \triangleleft \text{Aut}(G)$.

B9: For Γ a comm.ring, define terms **maximal ideal** and **prime ideal**. For $J \subset \Gamma$ an ideal, prove that

J a maximal ideal $\implies \Gamma/J$ is a field.

Give, with proof, an explicit comm.ring Γ and *prime ideal* J which is not a maximal ideal.

End of In-class-B

Hm-B: _____ 455pts

B7: _____ 130pts

B8: _____ 35pts

B9: _____ 65pts

Total: _____ 685pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor (or his colleague).*

Name/Signature/Ord

Ord: _____