

Please. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g., “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with **negative** signs!)

Abbrevs: **ITOf** for “in terms of”. **st.** for “such that” **seq** for “sequence” **posint** for “positive integer” **DL** for “Dedekind-Left”, the lefthand atom of a Dedekind cut. **poly** for “polynomial” **coeff** for “coefficient”

For each of the limit questions, write “ $+\infty$ ”, “ $-\infty$ ”, a real number, or *–if none of these–* “DNE”. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$.

B0: For the following Greek letters, please write the **other case**, along with their names.

Eg: “ α : B: .” You fill in: A **alpha** **beta**.

Ω : Δ : N:

ξ : ρ : λ :

B1: Show no work.

Z: Prof. King thinks that every **if**-word should be matched by an explicit **then**-word, such as “*then*”, “*necessarily*” or “*we have that*”. **Circle** one:

True Oui Da Yes Uh, Did I miss something??

a: $\lim_{n \rightarrow \infty} \frac{5n+[7+4n][1-n]}{4+n^2} =$.

b: (Right/left hand limits): $\lim_{x \rightarrow 3^+} \frac{|3-x|}{3-x} =$.

$\lim_{x \rightarrow 3^-} \frac{|3-x|}{3-x} =$.

c: The set $S \subset \mathbb{R}$ is upper-bounded, yet has no LUB (in \mathbb{R}). So $S =$.

A particular upper-bnd for your S is $\in \mathbb{R}$.

d: For $r \in [-\infty, +\infty]$, its DL is $\{q \in \mathbb{Q} \mid q < r\}$, written \mathbf{L}_r .

Given $s, t \in \mathbb{R}$, define “ $s + t$ ” by defining

$\mathbf{L}_{s+t} :=$

ITOf \mathbf{L}_s and \mathbf{L}_t and addition-of-rationals.

If you apply this defn to $s := -\infty$ and $t := +\infty$, the definition says that $-\infty + [+ \infty] =$.

e: For a set Ω of extended reals, define its supremum $r := \sup(\Omega)$ by defining its DL:

$\mathbf{L}_r :=$.

f: Use $\lfloor \cdot \rfloor$ for the “floor fnc” (the “greatest integer fnc”). So $\lfloor \pi \rfloor =$ and $\lfloor -\pi \rfloor =$.

g: Let E be the set $\left\{ 5 + \left[[-1]^n \cdot \frac{2n-1}{n} \right] \right\}_{n \in \mathbb{Z}_+}$. Then $\sup(E) =$ and $\inf(E) =$.

h: $\lim_{x \rightarrow 0} \frac{\sqrt{25+x} - \sqrt{25-x}}{x} =$.

i: Let $F(x) := x^{\sin(x)}$. Its derivative, then, is $F'(x) =$.

[Hint: How is $x^{\sin(x)}$ defined ITOf the exponential fnc?]

Essays. On your own sheets of lined paper, give the following definitions or proofs. No “scratch work” accepted, only complete, grammatical, coherent sentences. Write **every 2nd or every 3rd line** for math essays.

B2: **I** Write the definition of “ $\lim_{x \rightarrow 7} x^2 = 4$ ”. [Hint: You need 3 quantifiers, an ε and a δ .]

II Given seqs. with $\lim(\vec{b}) = 2$ and $\lim(\vec{c}) = 4$, let $\vec{s} := \vec{b} + \vec{c}$. Given $\varepsilon > 0$, produce –with careful proof– a posint N st.: $\forall k \geq N: |s_k - 6| < \varepsilon$.

B3: State the Fundamental Thm of Arithmetic.

Use the FTArithmetic to give a careful proof that there are *no* posints N, D for which $\left[\frac{N}{D}\right]^3 = 4$.

End of Class-B

B0: 18pts

B1: 200pts

B2: 75pts

B3: 75pts

KnowsOrd: _____ 2pts

Total: _____ 370pts

Print
name

Ord:

.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____