

Staple!

Ord: _____

Honors Calc 1
MAC3472 3203

Exam B

Prof. JLF King
Touch: 18Mar2017

Note. This is an open brain, open HHA, closed book exam. Please fill in the blanks. For B2 show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

B1: Salt is being dumped, at 10 cubic feet per minute, from a conveyor belt so as to form a conical pile whose base-diameter is always twice its height. Let R denote the speed of increase in its height when the cone is 10 ft high.

i Use a full sheet of paper to draw the setup. Derive an equation which relates volume, v , to height, h .
Eqn: _____

ii Differentiate your eqn. w.r.t. time so as to relate $\frac{dh}{dt}$ and h and $\frac{dv}{dt}$.

iii Solving for R yields $R =$ _____.
[Hint: Units?]

B2: Z Sneha introduced a game involving Mafiosi.
Circle one: Yes. Ummm. Who is Sneha?

a Compute the slope of the tangent to ellipse

$$\frac{x^2}{9} + \frac{y^2}{36} = 1^2$$

at point $(1, 4\sqrt{2})$. Slope= _____.

b Let $\varphi(x) := \int_{e+5}^{x^3+e^x} \frac{\sin(t)}{t} dt$. Use FTC to find
 $\varphi'(x) =$ _____.

c Use l'Hôpital's Thm, when applicable, to compute these limits. Write DNE, or $+\infty$, or $-\infty$, or a number.
 $\lim_{t \searrow 0} [3+t]^{1/t} =$ _____.
 $\lim_{t \searrow 0} [1+3t]^{1/t} =$ _____.

d Let R be the filled-in square with corners $(\pm 1, \pm 1)$. Rotate R about the line $x+y = 5$. Then $\text{Vol}(\text{SoR}) =$ _____.

e Use the subst. $u := \ln(x)$ to compute an anti-deriv. of $\frac{\sqrt[3]{\ln(x)}}{x}$. A.D.= _____.

B3: Let $f(x) := x^3 + 7 + e^x$ and let N_f be the corresponding Newton's Method map. Then

$N_f(z) =$ _____.

Use a full sheet of paper and graph f , labeling all vertical and horiz. asymptotes, and specifically showing the behavior of $f(x)$ as $x \rightarrow \pm\infty$.

The number of fixed-points of N_f is _____.

[Hint: You can answer this just by looking at f .]

End of Exam B

B1: _____ 75pts

B2: _____ 300pts

B3: _____ 70pts

Total: _____ 445pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor (or his colleague)."
Name/Signature/Ord _____

Ord: _____