

ACTroids. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

All M_Ses, here, are subspaces of \mathbb{R} .

B4: Show no work.

[z₅] The author of our text is **Circle**: **Archimedes**
Bubba **Buck** **Doker** **Euler** **Machen** **Rosenlicht**

[a₁₀] Repeating decimal $0.7\overline{20}$ equals $\frac{n}{d}$, where posints
 $n \perp d$ are $n =$ _____ and $d =$ _____.

[b₁₀] Define $X :=$ _____ $\subset \mathbb{R}$ st. the X -open
ball $B := X\text{-Bal}_3(0) =$ _____ satisfies
 $B \subsetneq \text{Cl}_X(B) =$ _____ $\subsetneq X\text{-CldBal}_3(0) =$ _____

[c₁₀] With $\alpha(\cdot, \cdot)$ the arctan metric on \mathbb{R} , the
 $\alpha\text{-Diam}(\text{PRIMES}) =$ _____.
[Hint: No $\alpha()$ should appear in your ans. But arctan() can.]

[d₁₅] Sets $A :=$ _____ and $B :=$ _____ have
 $\partial_{\mathbb{R}}(A) =$ _____ and $\partial_{\mathbb{R}}(B) =$ _____. Moreover,
 $= \partial_{\mathbb{R}}(A) \cap \partial_{\mathbb{R}}(B) \subsetneq \partial_{\mathbb{R}}(A \cap B) =$ _____.

[e₁₅] Sets $C :=$ _____ and $D :=$ _____ have
 $\partial_{\mathbb{R}}(C) =$ _____ and $\partial_{\mathbb{R}}(D) =$ _____. Further,
 $= \partial_{\mathbb{R}}(C) \cap \partial_{\mathbb{R}}(D) \supsetneq \partial_{\mathbb{R}}(C \cap D) =$ _____.

Essay question:

B5: In \mathbb{R} : Prove, for all sets $E_1, E_2 \subset \mathbb{R}$, that

$$1: \quad \partial(E_1) \cup \partial(E_2) \supset \partial(E_1 \cap E_2).$$

[Hint: Fixing a point $q \in \partial(E_1 \cap E_2)$, we know there exist sequences $\vec{b} \subset E_1 \cap E_2$ and $\vec{x} \subset [E_1 \cap E_2]^c$ converging to q . You need to show, either for $j=1$ or $j=2$, that E_j^c includes a sequence \vec{y} that converges to q . Also, explain why the existance of such a \vec{y} is sufficient to establish (??).]

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____