

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Fill-in all blanks on this sheet **including** the blanks for the essay questions!

B1: Show no work.

a The point $P := (5, -1)$, in the plane, has orthogonal proj. $\text{Proj}(P) = (\underline{\hspace{2cm}}, \underline{\hspace{2cm}})$ on the line $y = 1 + 3x$.

b In \mathbb{R}^3 , the point $P := (2, -1, 3)$ has orthogonal projection $\text{Proj}(P) = (\underline{\hspace{2cm}}, \underline{\hspace{2cm}}, \underline{\hspace{2cm}})$ on the line passing through $(2, 2, 4)$ and the origin.

c In \mathbb{R} , open intervals $J_n := (\underline{\hspace{2cm}}, \underline{\hspace{2cm}})$ intersect to a **non**-open set $\bigcap_{n=1}^{\infty} J_n = \underline{\hspace{2cm}}$.

d Let $S := \{q \in \mathbb{Q} \mid 3 < q \leq 5\} = \mathbb{Q} \cap (3, 5]$. Then:
 $\text{Cl}_{\mathbb{R}}(S) = \underline{\hspace{2cm}}$. $\text{Itr}_{\mathbb{R}}(S) = \underline{\hspace{2cm}}$.
 $\text{Cl}_{\mathbb{Q}}(S) = \underline{\hspace{2cm}}$. $\text{Itr}_{\mathbb{Q}}(S) = \underline{\hspace{2cm}}$.

e Let $S := \{q \in \mathbb{Q} \mid 3 < q \leq 5\} = \mathbb{Q} \cap (3, 5]$. Then:
 $\text{Bdry}_{\mathbb{R}}(S) = \underline{\hspace{2cm}}$. $\text{Bdry}_{\mathbb{Q}}(S) = \underline{\hspace{2cm}}$.

f On \mathbb{Z}_+ , write $x \$ y$ IFF $xy < 0$. So $\$$ is **Circle**
Transitive T F . **Symmetric** T F .

Reflexive T F .

On \mathbb{Z} , say that $x \nabla y$ IFF $x - y \leq 1$. Then ∇ is:

Trans. T F . **Symm.** T F . **Reflex.** T F .

(Be *careful* on both parts!)

On \mathbb{R}_+ , define several relations: Say that $x \mathcal{R} y$ IFF $y - x < 17$. Define \mathcal{P} by: $x \mathcal{P} y$ IFF $x^{\log(y)} = 5$.

Say that $x \mathcal{J} y$ IFF $x + y$ is irrational.

Use \bullet for the “divides” relation on the positive integers: $k \bullet n$ iff there exists a posint r with $rk = n$.

f₁ Please **circle** those of the following relations that are transitive (on their domain of defn.).

\neq \bullet \leqslant \mathcal{R} \mathcal{P} \mathcal{J}

f₂ **Circle** the symmetric relations:

\neq \bullet \leqslant \mathcal{R} \mathcal{P} \mathcal{J}

f₃ **Circle** the reflexive relations:

\neq \bullet \leqslant \mathcal{R} \mathcal{P} \mathcal{J}

Essay questions: Fill-in all blanks. For each question, carefully write a triple-spaced essay solving the problem.

B2: Define: “On a set E , a binary relation ∇ is an **equivalence relation** IFF...”. Make sure to define any terms like “reflexive” that you use in your defn.!

Let \mathbf{P} be the set of ordered integer-pairs (n, d) , with $d \neq 0$. Define relation $\$$ on \mathbf{P} by

$$(N, D) \$ (x, y) \text{ IFF } N \cdot y = x \cdot D.$$

Prove, in detail, that $\$$ is an equivalence relation.

B3: A **field** $(F, +, 0, \cdot, 1)$ satisfies these axioms:

B4: “MS (Ω, d) is **connected**” means that...

B5: Sets U_i are open in MS (Ω, d) . **i** Prove that $U_1 \cup U_2$ is Ω -open.

ii Prove that $U_1 \cap U_2$ is Ω -open.

B6: In MS (Ω, d) , sequence $\vec{b} \subset \Omega$ converges to both q and r in Ω . Prove that $q = r$, by showing that $d(q, r) = 0$. [Hint: Use the Triangle Inequality.]

B7: Below, $\mathbf{V}, \mathbf{W}, \mathbf{E}$ are real vectorspaces.

a A map $f: \mathbf{V} \times \mathbf{W} \rightarrow \mathbf{E}$ is **bilinear** if...

b A map $\langle \cdot, \cdot \rangle$ from $\mathbf{V} \times \mathbf{V} \rightarrow \mathbb{R}$ is an **inner product** if...

B8: Use $\langle \cdot, \cdot \rangle$ for an inner-product on \mathbb{R} -vectorspace \mathbf{V} .

x1 State the Cauchy-Schwarz Inequality Thm, carefully stating the IFF-condition for equality. **x2** Prove the C-S Inequality Thm, using the axioms for inner-product.

B9: Our space is \mathbb{R} with the usual Euclidean metric $d(x, z) := |x - z|$. **I** These closed bnded non-void intervals $A_n := \underline{\hspace{2cm}}$, when

unioned, form a set $\bigcup_{n=1}^{\infty} A_n = \underline{\hspace{2cm}}$ which is not closed.

II Suppose that U, V_1, V_2, \dots are open sets of \mathbb{R} , and E, K_1, K_2, \dots are closed sets. **Circle** those of the following sets which are guaranteed to be closed in \mathbb{R} .

$$E \setminus U. \quad U \setminus E. \quad K_1 \setminus E. \quad \bigcap_{n=1}^{\infty} K_n.$$

$$\mathbb{R} \setminus \left[\bigcup_{n=1}^{\infty} V_n \right]. \quad E \cup K_1. \quad E \cap K_1.$$