

Open brain, open book/notes and calculator.
This is due at the beginning of class on
Monday, 09Apr2007.

B'6: Short answer: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Consider the four congruences C1: $z \equiv_{34} 18$, C2: $z \equiv_{51} 1$, C3: $z \equiv_{35} 27$ and C4: $z \equiv_{22} 8$. Let z_j be the *smallest natnum* satisfying (C1) $\wedge \dots \wedge$ (Cj). Then

$$z_2 = \dots ; z_3 = \dots ; z_4 = \dots$$

b Let $N := 15$. In std. form, this cyclo-poly

$$C_N(x) = \dots$$

c Let $N := 5662!$ (factorial). Written in base-10, this N ends in \dots many zeros?

d The eight solns to $x^{3304} \equiv_{1217} 476$ are: (Write each in $[0..1217]$, in order $a < b < \dots < h$.)

$$x = \dots$$

[Hint: The numbers 3, 5, 6, 7 are each mod-1217 primroots.]

e Modulo 187, the multiplicative-order of 87 is

$$\dots \quad [Hint: \varphi(187) has very few prime factors.]$$

End of Bonus-B'

B'6: 50pts

Total: 50pts

Print name Ord:

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: