

Prof. JLF King
Touch: 16Mar2016

Recall that InClass-B will be on **04Nov, Friday**.

Please. Do not approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$. Write expressions unambiguously e.g., “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with negative signs!)

PB0: Short answer: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Binomial coefficient $\binom{7}{2} = \underline{\dots\dots\dots}$.

Multinomial coeff $\binom{9}{3,4,2} = \underline{\dots\dots\dots}$.

b Let $B := \begin{bmatrix} 2 & 1 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$. [Hint: Write B as a diag-matrix plus a nilpotent matrix.]

Then $B^{2005} = \underline{\dots\dots\dots}$.

c $C := \begin{bmatrix} 2 & 0 & -3 \\ 2 & -1 & 5 \\ 3 & 0 & 1 \end{bmatrix}$. Matrix $P_C(2) = \underline{\dots\dots\dots}$.

And the char.poly is $p_C(x) = \underline{\dots\dots\dots}$.

d Greek *stokhos* means

Below, let *AT* mean “Always True”, *AF* mean “Always False” and *Nei* mean “Neither always true nor always false”.

1 If 3 is an M -eval, then 9 is an M^2 -eval. *AT AF Nei*

2 If 9 is an M^2 -eval then 3 is an M -eval. *AT AF Nei*

3 Suppose $w \neq 0$ is an evec for M^2 . Then w is an evec for M . *AT AF Nei*

PB1: State and prove Cramer's Thm. Let $E := \begin{bmatrix} x & y & z \\ 7 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix}$. Let $h(x, y, z)$ be the $(3, 1)$ -entry of E^{-1} . Then $h(x, y, z) = \underline{\dots\dots\dots}$, a rational fnc.

PB2: Diagonalize the 3×3 matrix K , on the blackboard, and compute K^{4105} .

PB3: Matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where A and D are 5×5 and 7×7 , resp. Suppose C is the 7×5 zero-matrix. Prove that $\det(M) = \det(A) \cdot \det(D)$.

PB4: Below, $G = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, with A, B, C, D each 2×2 . Give an *example* where

$$\det(G) \neq \det(A) \cdot \det(D) - \det(B) \cdot \det(C).$$

Now produce an example where

$$\det(G) \neq \det(AD - BC).$$

PB5: Poly $h(x) = b_0 + b_1x + b_2x^2 + b_3x^3$ satisfies that $h(2)=0, h(3)=1, h(5)=0, h(6)=2$. Use **Lagrange Interpolation** to compute $b_0 = \underline{\dots\dots\dots}$; $b_1 = \underline{\dots\dots\dots}$; $b_2 = \underline{\dots\dots\dots}$; $b_3 = \underline{\dots\dots\dots}$. Show the details.

PB6: OASSOP, write out the following sentences, and complete them to give the correct definitions. Be specific with phrases “every”, “some”, “there exists”, etc.. Define “trivial soln” before using it. Let $\mathbf{V} := \mathbb{C}^{5 \times 5}$. All matrices below are 5×5 complex matrices unless otherwise stated.

*A col-vector $\mathbf{v} \in \mathbf{V}$ is an **eigenvector** for M if...*

*Collection $\mathcal{C} := \{\mathbf{W}_1, \mathbf{W}_2, \dots, \mathbf{W}_K\}$ of \mathbf{V} -subspaces is **linearly independent** IFF ...*

*Matrix M is **nilpotent** if ...*

*Matrix M is an **orthogonal matrix** if ...*

*Matrix M is **unitary** if ...*

*Fix $\beta \in \mathbb{C}$. The **M -algebraic multiplicity** of β is The **M -geometric multiplicity** of β is*

*Matrices B, E are **similar** if They are **row equivalent** if*

*An $K \times N$ matrix R is in **reduced row echelon form** IFF ... (Define pivot col/row and free col.)*

*The **degree** of poly $f(x, y, z)$ is This poly f is **homogeneous** IFF*

*Degree-5 poly $g(x)$ **splits** over \mathbf{F} IFF ...*

*A field \mathbf{F} is **algebraically closed** if ...*

PB7: Produce, with proof, a \mathbb{Q} -matrix whose char-poly is $x^4 + 3$. State the Cayley-Hamilton Thm.

Please PRINT your **name** and **ordinal**. Ta:

Ord:

Filename: Classwork/LinearAlg/LinA2005t/b-c1-PRAC.
LinA2005t.latex
As of: Monday 31Aug2015. Typeset: 16Mar2016 at 02:19.