

Please. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g, “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

Abbrevs: **OYOSOPaper** for “on your own sheets of paper”; you are writing a math essay, giving a definition or a proof. No “scratch work” accepted, only complete, grammatical, coherent sentences. Write **every 2nd or every 3rd line** for math essays.

ITOf for “in terms of”. **st.** for “such that” **seq** for “sequence” **posint** for “positive integer” **DL** for “Dedekind-Left”, the lefthand atom of a Dedekind cut. **poly** for “polynomial” **coeff** for “coefficient”

For each of the limit questions, write “ $+\infty$ ”, “ $-\infty$ ”, a real number, or *-if none of these-* “DNE”. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$. Write **DNE** in a blank *if* the described object does not exist or if the indicated operation cannot be performed.

B0: For the following Greek letters, please write the **other case**, along with their names.

Eg: “ $\alpha:$ $B:$ ” You fill in: A alpha B beta.

$\Omega:$ $\Gamma:$ $\Psi:$

$\mu:$ $\rho:$ $\delta:$

B1: Show no work. **a** $\lim_{n \rightarrow \infty} \frac{5n+[2+3n][n-1]}{4+n^2} =$

b (Right/left hand limits): $\lim_{x \rightarrow 3^+} \frac{|3-x|}{3-x} =$

$\lim_{x \rightarrow 3^-} \frac{|3-x|}{3-x} =$

c The set $S \subset \mathbb{R}$ is upper-bounded, yet has no LUB (in \mathbb{R}). So $S =$

A particular upper-bnd for *your* S is $\in \mathbb{R}$.

d For $r \in [-\infty, +\infty]$, its DL is $\{q \in \mathbb{Q} \mid q < r\}$, written \mathbf{L}_r .

Given $s, t \in \mathbb{R}$, define “ $s + t$ ” by defining

$\mathbf{L}_{s+t} :=$

ITOf \mathbf{L}_s and \mathbf{L}_t and addition-of-rationals.

If you apply this defn to $s := -\infty$ and $t := +\infty$, the definition says that $-\infty + [+ \infty] =$

e For a set S of extended reals, define its supremum $r := \sup(S)$ by defining its DL:

$\mathbf{L}_r :=$

f Use $\lfloor \cdot \rfloor$ for the “floor fnc” (the “greatest integer fnc”). So $\lfloor \pi \rfloor =$ and $\lfloor -\pi \rfloor =$

g Let E be the set $\left\{ 5 + \left[\left[-1 \right]^n \cdot \frac{3n-1}{n} \right] \right\}_{n \in \mathbb{Z}_+}$. Then $\sup_{\mathbb{R}}(E) =$ and $\inf_{\mathbb{R}}(E) =$

h $\lim_{x \rightarrow 0} \frac{\sqrt{9+x} - \sqrt{9-x}}{x} =$

i Let $B(x) := x^{[2x]}$. Its derivative, then, is $B'(x) =$
[Hint: How is $x^{[2x]}$ defined ITOf the exponential fnc?]

Essays. On your own sheets of lined paper, give the following definitions or proofs. No “scratch work” accepted, only complete, grammatical, coherent sentences. Write **every 2nd or every 3rd line** for math essays.

B2.14159: The **P.F** [Prime Factorization] of a posint k is the unique finite multiset $\mathcal{S}_k \subset \text{Primes}$ st. $\prod(\mathcal{S}_k) = k$. E.g $\mathcal{S}_{90} = \{2, 3, 3, 5\}$.

Let \equiv mean \equiv_3 . A **T-integer** (abbrev, **tint**) is an element of

$\mathbf{T} := \{n \in \mathbb{Z}_+ \mid n \equiv 1\} \stackrel{\text{note}}{=} \{1, 4, 7, 10, 13, \dots\}$.

A tint α is **amber** if $\alpha \neq 1$ and

$\forall x \in \mathbf{T}: x \bullet \alpha \implies x \in \{1, \alpha\}$.

Tint β is **blue** if $\beta \neq 1$ and

$\forall y, z \in \mathbf{T}: \beta \bullet [y \cdot z] \implies [[\beta \bullet y] \text{ or } [\beta \bullet z]]$.

(E.g: 10 is amber, but certainly not blue, since $10 \bullet [4 \cdot 25]$, yet 10 divides neither 4 nor 25).

i

State and prove: **THM A.** *A tint $\alpha > 1$ is amber IFF its P.F S_α satisfies...*

For each tint below, either write “*amber*” or else a **T**-factorization $w \cdot x$, with $w, x \in \mathbf{T} \setminus \{1\}$.

49: \dots 52: \dots 55: \dots 58: \dots

ii

State and prove: **THM B.** *Tint $\beta > 1$ is blue IFF its P.F S_β fulfills...*

In each blank, write “*blue*” or $y \cdot z$ with $y, z \in \mathbf{T}$ yet $\beta \nmid y$ and $\beta \nmid z$.

55: \dots 79: \dots 121: \dots

B2: Recall $\mathbf{B} := 1 + 3\mathbb{N}$, the set of “Blip-numbers”, which is sealed under multiplication. OYOSOPaper, give the formal definitions of:

*A number $\alpha \in \mathbf{B}$ is **B-irreducible** IFF...*

*A Blip number β is **B-prime** IFF...*

Produce two different factorizations of 484 into a product of **B**-irreds. Produce, with careful proof, a Blip-number which is **B-irreducible** but *not* **B-prime**. [Hint: Make use of your factorizations of 484.]

i

B3: Write the definition of “ $\lim_{x \rightarrow 4} x^2 = 5$ ”. [Hint: You need 3 quantifiers, an ε and a δ .]

ii

Given seqs. with $\lim(\vec{b}) = 2$ and $\lim(\vec{c}) = 4$, let $\vec{a} := \vec{b} \cdot \vec{c}$. Given $\varepsilon > 0$, produce –with careful proof– a posint N st.: $\forall k \geq N: |a_k - 8| < \varepsilon$.

iii

Given seqs. with $\lim(\vec{b}) = 2$ and $\lim(\vec{c}) = 4$, let $\vec{s} := \vec{b} + \vec{c}$. Given $\varepsilon > 0$, produce –with careful proof– a posint N st.: $\forall k \geq N: |s_k - 6| < \varepsilon$.

B4: Consider a seq. \vec{b} of distinct reals. Define the index-set

$$\mathbf{T} := \{N \in \mathbb{Z}_+ \mid \forall k > N: b_N > b_k\}.$$

Use \mathbf{T} to give a careful proof of: *Either \vec{b} has an increasing subseq, or a decreasing subsequence.*

B5: State the Triangle Inequality (TE). Start your defn with “The TE states that for all reals...”.

State Bernoulli’s Inequality (BE). Now give a careful induction proof of BE.

B6: State the Fundamental Thm of Arithmetic (about factoring into primes).

Use the **FTArithmetic** to give a careful proof that there are *no* posints n, d for which $\left[\frac{n}{d}\right]^2 = 7$.

B7: State the **Sandwich Theorem**. [Hint: It relates the limits of three sequences.] Now prove the **Sandwich Theorem**.

B8: Define: “A totally-ordered set $(\mathbf{T}, <)$ has the **LUB-property** IFF...”

Give a careful proof of: *If \mathbf{T} has the LUB-property, then \mathbf{T} has the GLB-property.*

B9: Define: “On a set E , a binary relation ∇ is an **equivalence relation** IFF...”. Make sure to define any terms like “reflexive” that you use in your defn!.

Let \mathbf{P} be the set of ordered integer-pairs (n, d) , with $d \neq 0$. Define relation $\$$ on \mathbf{P} by

$$(N, D) \$ (x, y) \quad \text{IFF} \quad N \cdot y = x \cdot D.$$

Prove, in detail, that $\$$ is an equivalence relation.

B10: Describe, in detail, the (necessarily erroneous) “proof” that all horses are the same color. Precisely write the meaning of the N^{th} proposition.

Now, examining the quantifiers carefully, pinpoint the exact error in the “proof”. (Warning: I’m not talking about an error in the result; pinpoint the error in the reasoning).

B11: Define: “A number $\beta \in \mathbb{R}$ is “**algebraic** of degree-3” IFF...”. You may use “poly(nomial)” without defn, but if you use terms “ratpoly” or “intpoly” then you must define them. Note that **zip** is my name for the poly all of whose coeffs are zero.

Define: “A number $\tau \in \mathbb{R}$ is **transcendental** IFF...”

End of Prac-B

Print
name

Ord:

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: